期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Growth, structural, spectral and high-power continuous-wave laser operation of Yb0.11Gd0.89COB crystal
1
作者 钟德高 滕冰 +8 位作者 孔伟金 薛冬峰 孙丛婷 李建宏 景贺琳 贺杰 徐雅琳 杨亮 唐捷 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第7期637-644,共8页
A Yb_(0.11)Gd_(0.89)Ca_4O(BO_3)_3 crystal with new composition was grown by the Czochralski method. The crystal structure was measured and analyzed. The unit-cell parameters of the Yb_(0.11)Gd_(0.89)COB were... A Yb_(0.11)Gd_(0.89)Ca_4O(BO_3)_3 crystal with new composition was grown by the Czochralski method. The crystal structure was measured and analyzed. The unit-cell parameters of the Yb_(0.11)Gd_(0.89)COB were calculated to be a=0.8089(7) nm, b=1.5987(6) nm, c=0.3545(8) nm, β=101.22o. The absorption and fluorescence spectra were measured. The maximum absorption cross-section of Yb_(0.11)Gd_(0.89) COB crystal was 0.79×10^(–20)cm^2, which occurred at 976 nm with Y polarization. The emission cross-section at 1027 nm was calculated to be 0.33×10^(–20) cm^2. The radiative lifetime trad was calculated to be 2.74 ms. The Stark energy-level diagram of Yb^(3+)in the Yb_(0.11)Gd_(0.89)COB crystal field at room temperature was determined. The ground-state energy level ~2F_(7/2) splitting was calculated to be as large as 1004 cm^(–1) and the zero-line energy was 10246 cm^(–1). A maximum output power of 9.35 W was achieved in continuous-wave(CW) mode, with the slope efficiency being 42.1%. Chemical etching experiment revealed that the dominating imperfections in the studied Yb_(0.11)Gd_(0.89) COB crystal were dislocations and sub-grain boundaries. The existence of crystal defects could cause light scattering, and degrade laser output efficiency. The influence of crystal defects on laser properties was discussed. 展开更多
关键词 optical materials rare earths optical properties crystal structure defects
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部