Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ ...Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ transformation behavior and electrochemical performance of manganese-based cathode is discussed.A comprehensive discussion manifests that the exposed(100)crystal plane is beneficial to the phase transformation from tunnel-structured MnO_(2) to layer-structured ZnMn_(3)O_(7)·3H_(2)O,which plays a critical role for the high reactivity,high capacity,fast diffusion kinetics and long cycling stability.Additionally,a two-stage zinc storage mechanism can be demonstrated,involving continuous activation reaction and phase transition reaction.As expected,it exhibits a high capacity of 275 mAh g^(-1)at 100 mA g^(-1),a superior durability over 1000 cycles and good rate capability.This study may open new windows toward developing advanced cathodes for ZIBs,and facilitate the applications of ZIBs in large-scale energy storage system.展开更多
For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatme...For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.展开更多
The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with di...The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with different exposed ratios of[003]in structural attenuation has not been clarified.Herein,we have unraveled comprehensively the structural decay difference for Ni-rich cathodes’primary particles with the different percentages of exposed[003]by regulating the precursor coprecipitation process.The findings based on structural characterization,first-principles calculations,finite element analysis,and electrochemical test reveal that the length and width of particles represent[110]and[003]directions,respectively,and show that cathode particles with a higher[110]/[003]ratio can effectively inhibit structure degradation and intergranular/intragranular crack formation owing to the low oxygen vacancy formation energy on(003)planes and the small local stress on secondary/primary particles.This study may provide guidance for the structural design of layered cathodes.展开更多
Cellulose polymerization degree and crystal plane changing are both considered to affect acid hydrolysis,however,it is uncertain to identify which one is more important.In this study,the filter paper was treated with ...Cellulose polymerization degree and crystal plane changing are both considered to affect acid hydrolysis,however,it is uncertain to identify which one is more important.In this study,the filter paper was treated with dilute hydrochloric acid to investigate the cellulose polymerization degree changing,and cotton linter was treated with NaOH for the purpose of changing its crystal plane.Both the treated and untreated samples were hydrolyzed under the condition of 1.0 wt%dilute hydrochloric acid with solid-liquid ratio 1:40 at 140℃for 30 min to compare the hydrolysis effects.It was found that the glucose yield increased from 9.5%to 19.7%when treated with 15%NaOH at 50℃for 30 min,and new crystal planes(1-10)(1-20)appeared after alkali treatment.According to the experimental results,it is concluded that crystal plane plays a vital role in cellulose acid hydrolysis.展开更多
The rapid development of the aerospace and nuclear industries is accompanied by increased exposure to high-energy ionising radiation.Thus,the performance of radiation shielding materials needs to be improved to extend...The rapid development of the aerospace and nuclear industries is accompanied by increased exposure to high-energy ionising radiation.Thus,the performance of radiation shielding materials needs to be improved to extend the service life of detectors and ensure the safety of personnel.The development of novel lightweight materials with high electron density has therefore become urgent to alleviate radiation risks.In this work,new MAPbI_(3)/epoxy(CH 3NH 3PbI 3/epoxy)composites were prepared via a crystal plane engineering strategy.These composites delivered excellent radiation shielding performance against 59.5 keV gamma rays.A high linear attenuation coefficient(1.887 cm−1)and mass attenuation coefficient(1.352 cm2 g−1)were achieved for a representative MAPbI_(3)/epoxy composite,which was 10 times higher than that of the epoxy.Theoretical calculations indicate that the electron density of MAPbI_(3)/epoxy composites significantly increases when the content ratio of the(110)plane in MAPbI_(3) increases.As a result,the chances of collision between the incident gamma rays and electrons in the MAPbI_(3)/epoxy composites were enhanced.The present work provides a novel strategy for designing and developing high-efficiency radiation shielding materials.展开更多
A theoretical analysis is made, using plane wave expansion, on how the width of the first three band gaps is influenced by filling ratio, dielectric constant ratio, and periodic width in one-dimensional photonic cryst...A theoretical analysis is made, using plane wave expansion, on how the width of the first three band gaps is influenced by filling ratio, dielectric constant ratio, and periodic width in one-dimensional photonic crystals (PhCs). From simulation and analysis, there are one, two, and three peak points on the first, second and third band gaps respectively with the changes of filling ratio un- der fixed dielectric constant ratio. When filling ratio is fixed, the bandwidth of the first band gap consistently increases with dielectric constant ratio. However, no similar trend is observed in the second and the third band gaps. Because of scaling properties, varying periodic width does not alter the relative bandwidth.展开更多
The super-cell plane wave expansion method is employed to calculate band structures for the design of a siliconbased one-dimensional phononic crystal plate with large absolute forbidden bands. In this method, a low im...The super-cell plane wave expansion method is employed to calculate band structures for the design of a siliconbased one-dimensional phononic crystal plate with large absolute forbidden bands. In this method, a low impedance medium is introduced to replace the free stress boundary, which largely reduces the computational complexity. The dependence of band gaps on structural parameters is investigated in detail. To prove the validity of the super-cell plane wave expansion, the transmitted power spectra of the Lamb wave are calculated by using a finite element method. With the detailed computation, the band-gap of a one-dimensional plate can be designed as required with appropriate structural parameters, which provides a guide to the fabrication of a Lamb wave phononic crystal.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
Au nanostructures were prepared on uniform Cu2O octahedra and rhombic dodecahedra via the galvanic replacement reaction between HAuCl 4 and Cu2O. The compositions and structures were studied by Scanning Electron Micro...Au nanostructures were prepared on uniform Cu2O octahedra and rhombic dodecahedra via the galvanic replacement reaction between HAuCl 4 and Cu2O. The compositions and structures were studied by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), High-Resolution Transmission Electron Microscope (HRTEM), X-Ray Diffraction (XRD), X-Ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS) and in-situ DRIFTS spectroscopy of CO adsorption. Different from the formation of Au-Cu alloys on Cu2O cubes by the galvanic replacement reaction (ChemNanoMat 2 (2016) 861-865), metallic Au particles and positively-charged Au clusters form on Cu2O octahedra and rhombic dodecahedra at very small Au loadings and only metallic Au particles form at large Au loadings. Metallic Au particles on Cu2O octahedra and rhombic dodecahedra are more active in catalyzing the liquid phase aerobic oxidation reaction of benzyl alcohol than positively-charged Au clusters. These results demonstrate an obvious morphology effect of Cu2O nanocrystals on the liquid-solid interfacial reactions and prove oxide morphology as an effective strategy to tune the surface reactivity and catalytic performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The squar...Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.展开更多
Photonic crystals (PCs) are increasingly attracting attention due to their ability to control light propagation.In this paper,the dispersion properties of a two-dimensional (2D) square lattice PCs with plane- wave...Photonic crystals (PCs) are increasingly attracting attention due to their ability to control light propagation.In this paper,the dispersion properties of a two-dimensional (2D) square lattice PCs with plane- wave expansion (PWE) method are presented,the equi-frequency contours and the band structure are analyzed,and the alignment transmission characteristics are simulated by using the finite difference time domain (FDTD) method.In addition,for the wavelength of 1.55 m,a kind of application structure with the lattice constant a=405 nm and the radius of air holes R=135 nm which can restrict the transmission of beams in photonic crystal without defect is proposed and simulated.The structure which can collimate the output beam and compress its divergence angle is easy to design.It has wide application prospects in optical communication and three-dimensional (3D) imaging lidar systems.展开更多
In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation...In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch-Floquet theorem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the planewave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectricity with the larger lattice constant ratios and the filling fractions.展开更多
This paper studies dispersion characteristics of the transverse magnetic (TM) mode for two-dimensional unmagnetized dielectric plasma photonic crystal by a modified plane wave method. First, the cutoff behaviour is ...This paper studies dispersion characteristics of the transverse magnetic (TM) mode for two-dimensional unmagnetized dielectric plasma photonic crystal by a modified plane wave method. First, the cutoff behaviour is made clear by using the Maxwell-Garnett effective medium theory, and the influences of dielectric filling factor and dielectric constant on effective plasma frequency are analysed. Moreover, the occurence of large gaps in dielectric plasma photonic crystal is demonstrated by comparing the skin depth with the lattice constant, and the influence of plasma frequency on the first three gaps is also studied. Finally, by using the particle-in-cell simulation method, a transmission curve in the Г - X direction is obtained in dielectric plasma photonic crystal, which is in accordance with the dispersion curves calculated by the modified plane wave method, and the large gap between the transmission points of 27 GHz and 47 GHz is explained by comparing the electric field patterns in particle-in-cell simulation.展开更多
Band gaps of 2D phononic crystal with orthotropic cylindrical fillers embedded in the isotropic host are studied in this paper. Two kinds of periodic structures, namely, the square lattice and the triangle lattice, ar...Band gaps of 2D phononic crystal with orthotropic cylindrical fillers embedded in the isotropic host are studied in this paper. Two kinds of periodic structures, namely, the square lattice and the triangle lattice, are considered. For anisotropic phononic crystal, band gaps not only depend on the periodic lattice but also the angle between the symmetry axis of orthotropic material and that of the periodic structure. Rotating these cylindrical fillers makes the angle changing continuously; as a result, pass bands and forbidden bands of the phononic crystal are changed. The plane wave expansion method is used to reduce the band gap problem to an eigenvalue problem. The numerical example is given for YBCO/Epoxy composites. The location and the width of band gaps are estimated for different rotating angles. The influence of anisotropy on band gaps is discussed based on numerical results.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51932011 and 52072411)Science and technology innovation Program of Hunan Province(Grant no.2021RC3001)Natural Science Foundation of Hunan Province(Grant no.2021JJ20060,2018RS3019 and 2019JJ30033).
文摘Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries.Herein,the effects of crystal plane on the in-situ transformation behavior and electrochemical performance of manganese-based cathode is discussed.A comprehensive discussion manifests that the exposed(100)crystal plane is beneficial to the phase transformation from tunnel-structured MnO_(2) to layer-structured ZnMn_(3)O_(7)·3H_(2)O,which plays a critical role for the high reactivity,high capacity,fast diffusion kinetics and long cycling stability.Additionally,a two-stage zinc storage mechanism can be demonstrated,involving continuous activation reaction and phase transition reaction.As expected,it exhibits a high capacity of 275 mAh g^(-1)at 100 mA g^(-1),a superior durability over 1000 cycles and good rate capability.This study may open new windows toward developing advanced cathodes for ZIBs,and facilitate the applications of ZIBs in large-scale energy storage system.
基金financialy supported by the National Key R&D Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant Nos.22075331,51702376)+2 种基金the Fundamental Research Funds for the Central Universities(19lgzd02)the Guangdong Pearl River Talents Plan(2019QN01L117)the National Thousand Youth Talents Project of the Chinese Government
文摘For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.
基金National Natural Science Foundation of China,Grant/Award Numbers:20A20145,21878195,22108183,21975154,22179078Distinguished Young Foundation of Sichuan Province,Grant/Award Number:2020JDJQ0027+7 种基金2020 Strategic cooperation project between Sichuan University and Zigong Municipal People's Government,Grant/Award Number:2020CDZG-09State Key Laboratory of Polymer Materials Engineering,Grant/Award Number:sklpme2020-3-02Sichuan Provincial Department of Science and Technology,Grant/Award Numbers:2020YFG0471,2020YFG0022Sichuan Province Science and Technology Achievement Transfer and Trans-formation Project,Grant/Award Number:21ZHSF0111Sichuan University postdoctoral interdisciplinary Innovation Fund,the State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University,Grant/Award Number:EIPE22208National Postdoctoral Program for Innovative Talents,Grant/Award Number:BX20200222China Postdoctoral Science Foundation,Grant/Award Numbers:2020M682878,2022M712231Start-up funding of Chemistry and Chemical Engineering Guangdong Laboratory,Grant/Award Number:2122010。
文摘The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with different exposed ratios of[003]in structural attenuation has not been clarified.Herein,we have unraveled comprehensively the structural decay difference for Ni-rich cathodes’primary particles with the different percentages of exposed[003]by regulating the precursor coprecipitation process.The findings based on structural characterization,first-principles calculations,finite element analysis,and electrochemical test reveal that the length and width of particles represent[110]and[003]directions,respectively,and show that cathode particles with a higher[110]/[003]ratio can effectively inhibit structure degradation and intergranular/intragranular crack formation owing to the low oxygen vacancy formation energy on(003)planes and the small local stress on secondary/primary particles.This study may provide guidance for the structural design of layered cathodes.
基金the Key Programs of the Chinese Academy of Sciences(No.KGZD-EW-304-2)the National Basic Research Program of China(No.2012CB215302)+1 种基金Science and Technological Fund of Anhui Province for Outstanding Youth(1508085J01)the National Key Technologies R&D Program(2015BAD15B06).
文摘Cellulose polymerization degree and crystal plane changing are both considered to affect acid hydrolysis,however,it is uncertain to identify which one is more important.In this study,the filter paper was treated with dilute hydrochloric acid to investigate the cellulose polymerization degree changing,and cotton linter was treated with NaOH for the purpose of changing its crystal plane.Both the treated and untreated samples were hydrolyzed under the condition of 1.0 wt%dilute hydrochloric acid with solid-liquid ratio 1:40 at 140℃for 30 min to compare the hydrolysis effects.It was found that the glucose yield increased from 9.5%to 19.7%when treated with 15%NaOH at 50℃for 30 min,and new crystal planes(1-10)(1-20)appeared after alkali treatment.According to the experimental results,it is concluded that crystal plane plays a vital role in cellulose acid hydrolysis.
基金Financial support provided by the National Natural Science Foundation of China(Grant No.U2067216)NSAF(Grant No.U2130109)is greatly appreciated.
文摘The rapid development of the aerospace and nuclear industries is accompanied by increased exposure to high-energy ionising radiation.Thus,the performance of radiation shielding materials needs to be improved to extend the service life of detectors and ensure the safety of personnel.The development of novel lightweight materials with high electron density has therefore become urgent to alleviate radiation risks.In this work,new MAPbI_(3)/epoxy(CH 3NH 3PbI 3/epoxy)composites were prepared via a crystal plane engineering strategy.These composites delivered excellent radiation shielding performance against 59.5 keV gamma rays.A high linear attenuation coefficient(1.887 cm−1)and mass attenuation coefficient(1.352 cm2 g−1)were achieved for a representative MAPbI_(3)/epoxy composite,which was 10 times higher than that of the epoxy.Theoretical calculations indicate that the electron density of MAPbI_(3)/epoxy composites significantly increases when the content ratio of the(110)plane in MAPbI_(3) increases.As a result,the chances of collision between the incident gamma rays and electrons in the MAPbI_(3)/epoxy composites were enhanced.The present work provides a novel strategy for designing and developing high-efficiency radiation shielding materials.
基金Supported by the National Natural Science Foundation of China (61036006)
文摘A theoretical analysis is made, using plane wave expansion, on how the width of the first three band gaps is influenced by filling ratio, dielectric constant ratio, and periodic width in one-dimensional photonic crystals (PhCs). From simulation and analysis, there are one, two, and three peak points on the first, second and third band gaps respectively with the changes of filling ratio un- der fixed dielectric constant ratio. When filling ratio is fixed, the bandwidth of the first band gap consistently increases with dielectric constant ratio. However, no similar trend is observed in the second and the third band gaps. Because of scaling properties, varying periodic width does not alter the relative bandwidth.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874086 and 10834009)the National Basic Research Program of China (Grant No. 2010CB327803)
文摘The super-cell plane wave expansion method is employed to calculate band structures for the design of a siliconbased one-dimensional phononic crystal plate with large absolute forbidden bands. In this method, a low impedance medium is introduced to replace the free stress boundary, which largely reduces the computational complexity. The dependence of band gaps on structural parameters is investigated in detail. To prove the validity of the super-cell plane wave expansion, the transmitted power spectra of the Lamb wave are calculated by using a finite element method. With the detailed computation, the band-gap of a one-dimensional plate can be designed as required with appropriate structural parameters, which provides a guide to the fabrication of a Lamb wave phononic crystal.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
基金supported by the National Basic Research Program of China(2013CB933104)the National Natural Science Foundation of China(21525313,21173204,21373192,U1332113)+1 种基金MOE Fundamental Research Funds for the Central Universities(WK2060030017)Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Au nanostructures were prepared on uniform Cu2O octahedra and rhombic dodecahedra via the galvanic replacement reaction between HAuCl 4 and Cu2O. The compositions and structures were studied by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), High-Resolution Transmission Electron Microscope (HRTEM), X-Ray Diffraction (XRD), X-Ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS) and in-situ DRIFTS spectroscopy of CO adsorption. Different from the formation of Au-Cu alloys on Cu2O cubes by the galvanic replacement reaction (ChemNanoMat 2 (2016) 861-865), metallic Au particles and positively-charged Au clusters form on Cu2O octahedra and rhombic dodecahedra at very small Au loadings and only metallic Au particles form at large Au loadings. Metallic Au particles on Cu2O octahedra and rhombic dodecahedra are more active in catalyzing the liquid phase aerobic oxidation reaction of benzyl alcohol than positively-charged Au clusters. These results demonstrate an obvious morphology effect of Cu2O nanocrystals on the liquid-solid interfacial reactions and prove oxide morphology as an effective strategy to tune the surface reactivity and catalytic performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2003AA311020), the National Natural Science Foundation of China (Grant No 90301007), the Special Funds for Major State Basic Research Program of China (Grant No G001CB3095).
文摘Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.
基金supported by the Pre-research Foundation under Grant No. G020104PJ09DZ0246
文摘Photonic crystals (PCs) are increasingly attracting attention due to their ability to control light propagation.In this paper,the dispersion properties of a two-dimensional (2D) square lattice PCs with plane- wave expansion (PWE) method are presented,the equi-frequency contours and the band structure are analyzed,and the alignment transmission characteristics are simulated by using the finite difference time domain (FDTD) method.In addition,for the wavelength of 1.55 m,a kind of application structure with the lattice constant a=405 nm and the radius of air holes R=135 nm which can restrict the transmission of beams in photonic crystal without defect is proposed and simulated.The structure which can collimate the output beam and compress its divergence angle is easy to design.It has wide application prospects in optical communication and three-dimensional (3D) imaging lidar systems.
基金the National Natural Science Foundation of China (10672017 and 10632020)
文摘In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The generalized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch-Floquet theorem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the planewave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectricity with the larger lattice constant ratios and the filling fractions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60571020 and 10975031)
文摘This paper studies dispersion characteristics of the transverse magnetic (TM) mode for two-dimensional unmagnetized dielectric plasma photonic crystal by a modified plane wave method. First, the cutoff behaviour is made clear by using the Maxwell-Garnett effective medium theory, and the influences of dielectric filling factor and dielectric constant on effective plasma frequency are analysed. Moreover, the occurence of large gaps in dielectric plasma photonic crystal is demonstrated by comparing the skin depth with the lattice constant, and the influence of plasma frequency on the first three gaps is also studied. Finally, by using the particle-in-cell simulation method, a transmission curve in the Г - X direction is obtained in dielectric plasma photonic crystal, which is in accordance with the dispersion curves calculated by the modified plane wave method, and the large gap between the transmission points of 27 GHz and 47 GHz is explained by comparing the electric field patterns in particle-in-cell simulation.
基金supported by the National Natural Science Foundation of China (No.10672019)
文摘Band gaps of 2D phononic crystal with orthotropic cylindrical fillers embedded in the isotropic host are studied in this paper. Two kinds of periodic structures, namely, the square lattice and the triangle lattice, are considered. For anisotropic phononic crystal, band gaps not only depend on the periodic lattice but also the angle between the symmetry axis of orthotropic material and that of the periodic structure. Rotating these cylindrical fillers makes the angle changing continuously; as a result, pass bands and forbidden bands of the phononic crystal are changed. The plane wave expansion method is used to reduce the band gap problem to an eigenvalue problem. The numerical example is given for YBCO/Epoxy composites. The location and the width of band gaps are estimated for different rotating angles. The influence of anisotropy on band gaps is discussed based on numerical results.