Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency...Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.展开更多
Different functional polystyrenes were synthesized and the adsorptions of microcystin-LR onto those resins were monitored by quartz crystal microbalance-dissipation. Both adsorption pH and surface properties had a con...Different functional polystyrenes were synthesized and the adsorptions of microcystin-LR onto those resins were monitored by quartz crystal microbalance-dissipation. Both adsorption pH and surface properties had a considerable effect on the adsorption amount, while adsorption temperature was less significant. Ammonium polystyrene would be a better candidate for microcystin-LR adsorption at neutral pH conditions.展开更多
<正>According to the piezoelectric equation and the vibration theory of the quartz crystal,the relations between the vibrating frequency and structural parameters under the thickness-shear-vibration of AT-cut qu...<正>According to the piezoelectric equation and the vibration theory of the quartz crystal,the relations between the vibrating frequency and structural parameters under the thickness-shear-vibration of AT-cut quartz crystal have been studied. The frequency conditions under which quartz crystal resonator formed stationary wave inside the electrode district and the transmission characteristics of wave outside the electrode district have also been discussed.A quartz crystal resonator was developed based on this analysis.The experiment showed that the force-sensing characteristics were independent of the fixation of the crystal edge.The detecting distinguish ability was up to 0.001°,and the short-term frequency stability was up to 1.38×10~ (-10)/min.展开更多
We present a new polymer quartz piezoelectric crystal sensor that takes a quartz piezoelectric crystal as the basal material and a nanometer nonmetallic polymer thin film as the surface coating based on the principle ...We present a new polymer quartz piezoelectric crystal sensor that takes a quartz piezoelectric crystal as the basal material and a nanometer nonmetallic polymer thin film as the surface coating based on the principle of quartz crystal microbalance(QCM). The new sensor can be used to detect the characteristic materials of a volatile liquid. A mechanical model of the new sensor was built, whose structure was a thin circle plate composing of polytef/quartz piezoelectric/polytef. The mechanical model had a diameter of 8 mm and a thickness of 170 μm. The vibration state of the model was simulated by software ANSYS after the physical parameters and the boundary condition of the new sensor were set. According to the results of experiments, we set up a frequency range from 9.995850 MHz to 9.997225 MHz, 17 kinds of frequencies and modes of vibration were obtained within this range. We found a special frequency fspof 9.996358 MHz. When the resonant frequency of the new sensor's mechanical model reached the special frequency, a special phenomenon occurred. In this case, the amplitude of the center point O on the mechanical model reached the maximum value. At the same time, the minimum absolute difference between the simulated frequency based on the ANSYS software and the experimental measured stable frequency was reached. The research showed that the design of the new polymer quartz piezoelectric crystal sensor perfectly conforms to the principle of QCM. A special frequency value fspwas found and subsequently became one of the most important parameters in the new sensor design.展开更多
The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inv...The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inviscid and incompressible for simplicity. Dynamic equations of the coupled system are established. The added mass effect of liquid on micro-beams is discussed in detail. Characteristics of frequency shift are clarified for different liquid depths. Modal analysis shows that a drag effect of liquid has resulted in the change of phase of interaction(surface shear force), thus changing the system resonant frequency. The obtained results are useful in resonator design and applications.展开更多
We report for the first time a cleavage phenomenon in the resonant peak of a piezoelectric quartz crystal(PQC) in liquid phase.In the presence of a strong longitudinal wave effect,an additional resonant peak appears i...We report for the first time a cleavage phenomenon in the resonant peak of a piezoelectric quartz crystal(PQC) in liquid phase.In the presence of a strong longitudinal wave effect,an additional resonant peak appears in the conductance-frequency curve.With gradually increasing liquid density,the additional peak moves from low to high frequency region then disappears.The frequency of the additional resonant peak is sensitive to the change in liquid density.The frequency shift of the additional peak is linear with the liquid density in a given range.For a 5 MHz PQC with a reflection distance of 16 mm for longitudinal wave,the sensitivity to liquid density is 2.61×10^6 Hz g^-1 cm^3.The overlap between the primary resonant peak and the additional resonant peak causes a decrease in the intensity of the former and an increase in the intensity of the latter.In a combined impedance analysis method,the changes in surface mass loading,density and viscosity of the liquid were monitored simultaneously by a PQC sensor.展开更多
With introduction of the first-order strain-gradient of surface micro-beams into the energy density function,we developed a two-dimensional dynamic model for a compound quartz crystal resonator(QCR) system,consistin...With introduction of the first-order strain-gradient of surface micro-beams into the energy density function,we developed a two-dimensional dynamic model for a compound quartz crystal resonator(QCR) system,consisting of a QCR and surface micro-beam arrays.The frequency shift that was induced by micro-beams with consideration of strain-gradients is discussed in detail and some useful results are obtained,which have important significance in resonator design and applications.展开更多
The electrochemical quartz crystal microbalance (EQCM) is used to investigate the characteristics of the thiolated self-assembled monolayer(SAM) on gold surface.A 5MHz QCM element serves as both the mass-sensitive sen...The electrochemical quartz crystal microbalance (EQCM) is used to investigate the characteristics of the thiolated self-assembled monolayer(SAM) on gold surface.A 5MHz QCM element serves as both the mass-sensitive sensor and the working electrode of the electrochemical system.The 6-mecapto-1-hexanol and and the 16-mer oligonucleotide with a mercaptohexyl group at the 5'-phosphate end are utilized to form the SAM on the gold electrode.The frequency response of the QCM during cyclic voltammetry (CV) scanning and cbronoamperometry are recorded together with the electrochemical current.The experimental results indicates that the frequency response is more sensitive to the surface coverage.Therefore,the response of the EQCM reveals more details of the SAM on gold electrode.It is especially useful for analysing the immobilization quality,such as probe orientation and coverage,of the SAM.展开更多
Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impeda...Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG&G M283 potentiostat. Equivalent circuit parameters of crystal resonance change significantly during electrodeposition and dissolution of copper in 0.1 mol/L H2SO4 aqueous solution in a cyclic potential sweep experiment, which is explained with an overall picture of mass loading, solution density and viscosity, etc..展开更多
Using the Sol-Gel method to produce the KTN ultrafine powder and the sintering technique with K2O atmosphere to prepare KTN ceramics as the targets instead of the KTN single crystal, highly oriented KTN thin films wer...Using the Sol-Gel method to produce the KTN ultrafine powder and the sintering technique with K2O atmosphere to prepare KTN ceramics as the targets instead of the KTN single crystal, highly oriented KTN thin films were produced on the transparent single crystal quartz (100) by the pulsed laser deposition (PLD). Since the thermal stress sustained by the quartz is relatively small, the limit temperature of the quartz substrates(300℃) is much lower than that of the P-Si substrates (560℃); the prepared thin film is at amorphous state. Increasing the pulsed laser energy density in the process incorporated with annealing the film after deposition at different temperatures converts the amorphous films into crystal. The optimal pulsed laser energy density and annealing temperature were 2.0 J/cm2 and 600℃, respectively. A discussion was made to understand the mechanism of film production at relatively low substrate temperature by PLD and effects of the annealing temperatures on the forming of the perovskite phase, and optimal conditions for the orientation of the crystal grain.展开更多
Calcium phosphate film was prepared by electrochemical deposition technology. Subsequently, the alkaline treatment process of calcium phosphate film in 0.1 mol/L NaOH solution was monitored on real time by the piezoel...Calcium phosphate film was prepared by electrochemical deposition technology. Subsequently, the alkaline treatment process of calcium phosphate film in 0.1 mol/L NaOH solution was monitored on real time by the piezoelectric quartz crystal impedance (PQCI) technique. The variations of morphology and composition for the alkaline treatment products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The dynamic variations of calcium phosphate can be characterized by the change of equivalent circuit parameters. The results show that the forming process of hydroxyapatite (HA) is composed of three stages: (1) acidic calcium phosphate dissolution; (2) phase transformation; and (3) HA formation. Furthermore, the correlative kinetic equations and parameters are obtained by fitting the static capacitance (C8)-time curves.展开更多
The fast and accurate identification of nerve tracts is critical for successful nerve anastomosis. Taking advantage of differences in acetylcholinesterase content between the spinal ventral and dorsal roots, we develo...The fast and accurate identification of nerve tracts is critical for successful nerve anastomosis. Taking advantage of differences in acetylcholinesterase content between the spinal ventral and dorsal roots, we developed a novel quartz crystal microbalance method to distinguish between these nerves based on acetylcholinesterase antibody reactivity. The acetylcholinesterase antibody was immobilized on the electrode surface of a quartz crystal microbalance and reacted with the acetylcholinesterase in sample solution. The formed antigen and antibody complexes added to the mass of the electrode inducing a change in frequency of the electrode. The spinal ventral and dorsal roots were distinguished by the change in frequency. The ventral and dorsal roots were cut into 1 to 2-mm long segments and then soaked in 250 pL PBS. Acetylcholinesterase antibody was immobilized on the quartz crystal microbalance gold electrode surface. The results revealed that in 10 minutes, both spinal ventral and dorsal roots induced a frequency change; however, the frequency change induced by the ventral roots was notably higher than that induced by the dorsal roots. No change was induced by bovine serum albumin or PBS. These results clearly demonstrate that a quartz crystal microbalance sensor can be used as a rapid, highly sensitive and accurate detection tool for the quick identification of spinal nerve roots intraoperatively.展开更多
We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account t...We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account the continuous conditions of shear force and bending moment at the interface of MBs/resonator, dependences of frequency shift of the compound QCR system versus material parameter and geometrical parameter are illustrated in detail for nonlinear and linear vibrations. It is found that the frequency shift produces a little right (left) translation for increasing elastic modulus (length/radius ratio) of MBs. Moreover, the frequency right (left) translation distance caused by nonlinear deformation becomes more serious in the second-order mode than in the first-order one,展开更多
An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sens...An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sensitive oscillator that has experienced airflow disturbances under the condition of varying room temperatures due to unstable flow-induced forces on the sensors surfaces. The three-dimensional (3D) nature of the airflow inside the sensor box and the interactions of the airflow on the sensors surfaces at different temperatures are studied by computational fluid dynamics (CFD) tools. Higher simulation accuracy is achieved by optimizing meshes, meshing the computational domain using a fine unstructural tetrahedron mesh. An optimum temperature, 30 ℃, is obtained by analyzing the distributions of velocity streamlines and the static pressure, as well as the flow-induced forces over time, all of which may be used to improve the identification accuracy of the electronic-nose for achieving stable and repeatable signals by removing the influence of temperature.展开更多
In this study, we have used a direct immunoassay where the simple binding between antigen and an antibody is detected. Immunoassays were performed in a drop system, monitoring the frequency decrease of the quartz-crys...In this study, we have used a direct immunoassay where the simple binding between antigen and an antibody is detected. Immunoassays were performed in a drop system, monitoring the frequency decrease of the quartz-crystal microbalance device because of mass increasing during immunoreaction. The QCM sensor was coated on both sides by gold electrodes, only one side of the crystal (liquid side) was in contact with the solution;the other side (contact side) was always dry. We tested a piezoelectric immunosensor for aflatoxin B1 (AFLA-B1) mycotoxin detection through the immo- bilization of DSP-anti-AFLAB1 antibody (AFLA-B1-Ab anti AFLAB1) on gold-coated quartz crystals (AT-cut/5 MHz). The DSP (3,3’-Dithiodipropionic-acid-di-N-hydroxysuccinimide ester) was used for the covalent attachment of the proteins. The piezoelectric crystal electrodes were pretreated by DSP for 15 min, rinsed with water and dried in a gentle flow of nitrogen gas. Then the DSP-coated crystals were installed in a sample holder and exposed to the anti-AFLAB1 antibody and to the AFLA-BI. Frequency and resistance shifts (Δf and ΔR) were measured simultaneously. Δf versus AFLA-BI concentrations in the range of 0.5 - 10 ppb exhibited a perfect linear correlation with a coefficient of above 0.998.展开更多
A dichlorosilane gas and a trichlorosilane gas in ambient hydrogen were evaluated to show their different gas flow motions in a slim vertical cold wall chemical vapor deposition reactor for the Minimal Fab system. Thi...A dichlorosilane gas and a trichlorosilane gas in ambient hydrogen were evaluated to show their different gas flow motions in a slim vertical cold wall chemical vapor deposition reactor for the Minimal Fab system. This evaluation was performed for improving and controlling the film qualities and the productivities, using two quartz crystal microbalances (QCM) installed at the </span><span style="font-family:Verdana;">inlet and exhaust of the chamber by taking into account that the QCM frequency corresponds to the real time changes in the gas properties.</span><span style="font-family:Verdana;"> Typically, the time period approaching from the inlet to the exhaust was shorter for the trichlorosilane gas than that for the dichlorosilane gas. The trichlorosilane gas was shown to move like plug flow, while the dichlorosilane gas seemed to be well mixed in the entire chamber.展开更多
Low-frequency double-resonance quartz crystal oscillator was developed with active inductance circuit aiming the start-up of stable oscillation of tuning fork-type quartz crystal resonator at 32.768 kHz within 0.37 ms...Low-frequency double-resonance quartz crystal oscillator was developed with active inductance circuit aiming the start-up of stable oscillation of tuning fork-type quartz crystal resonator at 32.768 kHz within 0.37 ms. The initial oscillation is triggered by a part of crystal oscillator forming a CR oscillator. The negative resistance ranges to 4 MΩ at gmf of 4.1 μA/V. In a limited frequency range, the circuit shows negative reactance Ccci = -3.4 pF equivalent to inductance Lcc = 9.8 H. The Allan standard deviation indicated 10-11 to 10-10, showing high stability comparable to general quartz crystal oscillator.展开更多
The aim of the present investigation was to develop a biosensor for the detection of amino acids, Leucine, Isoleucine and Valine based on a quartz crystal nanobalance. leucine (Leu), isoleucine (Ile), and valine (Val)...The aim of the present investigation was to develop a biosensor for the detection of amino acids, Leucine, Isoleucine and Valine based on a quartz crystal nanobalance. leucine (Leu), isoleucine (Ile), and valine (Val) were selectively determined by quartz crystal nanobalance (QCN) sensor in conjunction with net analyte signal (NAS)-based method called HLA/GO. An orthogonal design was applied for the formation of calibration and prediction sets including Leu, Ile and Val compounds. The selection of the optimal time range involved the calculation of the net analyte sig-nal regression plot in any considered time window for each test sample. The searching of a region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value was carried out by applying a moving window strategy. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 300 s were used to determine mixtures of compounds by HLA/GO method. The results showed that the method was successfully applied for the determina-tion of Leu, Ile and Val.展开更多
An unexpected frequency response for a piezoelectric quartz crystal (PQC) sensor to liquid density and viscosity was reported. For a PQC oscillating in a liquid phase, the frequency shifts (?f ) show a wave-shape re...An unexpected frequency response for a piezoelectric quartz crystal (PQC) sensor to liquid density and viscosity was reported. For a PQC oscillating in a liquid phase, the frequency shifts (?f ) show a wave-shape response to liquid density (ρ) and viscosity (η) in fine structure, if the longitudinal wave effect was not eliminated. This result is different from the well-known linear relationship between of ?f and (ρη)1/2. An oscillating frequency-temperature curve of the sensor was observed and explained.展开更多
基金supported by the Natural Science Foundation of China (Grant No.12234005)the major research and development program of Jiangsu Province (Grant Nos.BE2021007-2 and BK20222007)。
文摘Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.
基金This work was supported by the Foundation for scholar of Hefei Normal University (No.2014rcjj03), the Foundations of Educational Committee of Anhui Province (No.KJ2014A205), the National Natural Science Foundation of China (No.21101053, No.21101054, No.20934004, No.91127046, and No.20874094), the One Hundred Talent Project of Chinese Academy of Sciences, and the National Basic Research Program of China (No.2012CB821500 and No.2010CB934500).
文摘Different functional polystyrenes were synthesized and the adsorptions of microcystin-LR onto those resins were monitored by quartz crystal microbalance-dissipation. Both adsorption pH and surface properties had a considerable effect on the adsorption amount, while adsorption temperature was less significant. Ammonium polystyrene would be a better candidate for microcystin-LR adsorption at neutral pH conditions.
文摘<正>According to the piezoelectric equation and the vibration theory of the quartz crystal,the relations between the vibrating frequency and structural parameters under the thickness-shear-vibration of AT-cut quartz crystal have been studied. The frequency conditions under which quartz crystal resonator formed stationary wave inside the electrode district and the transmission characteristics of wave outside the electrode district have also been discussed.A quartz crystal resonator was developed based on this analysis.The experiment showed that the force-sensing characteristics were independent of the fixation of the crystal edge.The detecting distinguish ability was up to 0.001°,and the short-term frequency stability was up to 1.38×10~ (-10)/min.
基金Project supported by the National High Technology Research and Developmem Program of China ~Grant No. 2013AA030901).
文摘We present a new polymer quartz piezoelectric crystal sensor that takes a quartz piezoelectric crystal as the basal material and a nanometer nonmetallic polymer thin film as the surface coating based on the principle of quartz crystal microbalance(QCM). The new sensor can be used to detect the characteristic materials of a volatile liquid. A mechanical model of the new sensor was built, whose structure was a thin circle plate composing of polytef/quartz piezoelectric/polytef. The mechanical model had a diameter of 8 mm and a thickness of 170 μm. The vibration state of the model was simulated by software ANSYS after the physical parameters and the boundary condition of the new sensor were set. According to the results of experiments, we set up a frequency range from 9.995850 MHz to 9.997225 MHz, 17 kinds of frequencies and modes of vibration were obtained within this range. We found a special frequency fspof 9.996358 MHz. When the resonant frequency of the new sensor's mechanical model reached the special frequency, a special phenomenon occurred. In this case, the amplitude of the center point O on the mechanical model reached the maximum value. At the same time, the minimum absolute difference between the simulated frequency based on the ANSYS software and the experimental measured stable frequency was reached. The research showed that the design of the new polymer quartz piezoelectric crystal sensor perfectly conforms to the principle of QCM. A special frequency value fspwas found and subsequently became one of the most important parameters in the new sensor design.
基金Project supported by the National Natural Science Foundation of China(Nos.11272127 and51425006)the Research Fund for the Doctoral Program of Higher Education of China(No.20130142110022)the Grant from the Impact and Safety of Coastal Engineering Initiative Program of Zhejiang Provincial Government at Ningbo University(No.zj1213)
文摘The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inviscid and incompressible for simplicity. Dynamic equations of the coupled system are established. The added mass effect of liquid on micro-beams is discussed in detail. Characteristics of frequency shift are clarified for different liquid depths. Modal analysis shows that a drag effect of liquid has resulted in the change of phase of interaction(surface shear force), thus changing the system resonant frequency. The obtained results are useful in resonator design and applications.
基金supported by the National Natural Science Foundation of China(Nos.20775045,20975063)open foundation of the State Key Laboratory of Chemo/Biosensing and Chemometrics,Hunan University(No.2008012)
文摘We report for the first time a cleavage phenomenon in the resonant peak of a piezoelectric quartz crystal(PQC) in liquid phase.In the presence of a strong longitudinal wave effect,an additional resonant peak appears in the conductance-frequency curve.With gradually increasing liquid density,the additional peak moves from low to high frequency region then disappears.The frequency of the additional resonant peak is sensitive to the change in liquid density.The frequency shift of the additional peak is linear with the liquid density in a given range.For a 5 MHz PQC with a reflection distance of 16 mm for longitudinal wave,the sensitivity to liquid density is 2.61×10^6 Hz g^-1 cm^3.The overlap between the primary resonant peak and the additional resonant peak causes a decrease in the intensity of the former and an increase in the intensity of the latter.In a combined impedance analysis method,the changes in surface mass loading,density and viscosity of the liquid were monitored simultaneously by a PQC sensor.
基金supported by the National Science Foundation of China(Grants 11272127 and 51435006)Research Fund for the Doctoral Program of Higher Education of China(Grant 20130142110022)the Grant from the Impact and Safety of Coastal Engineering Initiative Program of Zhejiang Provincial Government at Ningbo University(Grant zj1213)
文摘With introduction of the first-order strain-gradient of surface micro-beams into the energy density function,we developed a two-dimensional dynamic model for a compound quartz crystal resonator(QCR) system,consisting of a QCR and surface micro-beam arrays.The frequency shift that was induced by micro-beams with consideration of strain-gradients is discussed in detail and some useful results are obtained,which have important significance in resonator design and applications.
文摘The electrochemical quartz crystal microbalance (EQCM) is used to investigate the characteristics of the thiolated self-assembled monolayer(SAM) on gold surface.A 5MHz QCM element serves as both the mass-sensitive sensor and the working electrode of the electrochemical system.The 6-mecapto-1-hexanol and and the 16-mer oligonucleotide with a mercaptohexyl group at the 5'-phosphate end are utilized to form the SAM on the gold electrode.The frequency response of the QCM during cyclic voltammetry (CV) scanning and cbronoamperometry are recorded together with the electrochemical current.The experimental results indicates that the frequency response is more sensitive to the surface coverage.Therefore,the response of the EQCM reveals more details of the SAM on gold electrode.It is especially useful for analysing the immobilization quality,such as probe orientation and coverage,of the SAM.
文摘Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG&G M283 potentiostat. Equivalent circuit parameters of crystal resonance change significantly during electrodeposition and dissolution of copper in 0.1 mol/L H2SO4 aqueous solution in a cyclic potential sweep experiment, which is explained with an overall picture of mass loading, solution density and viscosity, etc..
文摘Using the Sol-Gel method to produce the KTN ultrafine powder and the sintering technique with K2O atmosphere to prepare KTN ceramics as the targets instead of the KTN single crystal, highly oriented KTN thin films were produced on the transparent single crystal quartz (100) by the pulsed laser deposition (PLD). Since the thermal stress sustained by the quartz is relatively small, the limit temperature of the quartz substrates(300℃) is much lower than that of the P-Si substrates (560℃); the prepared thin film is at amorphous state. Increasing the pulsed laser energy density in the process incorporated with annealing the film after deposition at different temperatures converts the amorphous films into crystal. The optimal pulsed laser energy density and annealing temperature were 2.0 J/cm2 and 600℃, respectively. A discussion was made to understand the mechanism of film production at relatively low substrate temperature by PLD and effects of the annealing temperatures on the forming of the perovskite phase, and optimal conditions for the orientation of the crystal grain.
基金Project(2005CB623901) supported by the Major State Basic Research and Development Program of China
文摘Calcium phosphate film was prepared by electrochemical deposition technology. Subsequently, the alkaline treatment process of calcium phosphate film in 0.1 mol/L NaOH solution was monitored on real time by the piezoelectric quartz crystal impedance (PQCI) technique. The variations of morphology and composition for the alkaline treatment products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The dynamic variations of calcium phosphate can be characterized by the change of equivalent circuit parameters. The results show that the forming process of hydroxyapatite (HA) is composed of three stages: (1) acidic calcium phosphate dissolution; (2) phase transformation; and (3) HA formation. Furthermore, the correlative kinetic equations and parameters are obtained by fitting the static capacitance (C8)-time curves.
基金supported by the National Natural Science Foundation of China,No. 30973058,81171694Jiangsu Province Natural Science Foundation,No. BE2010743+2 种基金Jiangsu Graduate Student Innovation Project,No.CXZZ11_0721the Program for Development of Innovative Research Team in the First Affiliated Hospital of Nanjing Medical University,No. IRT-015a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The fast and accurate identification of nerve tracts is critical for successful nerve anastomosis. Taking advantage of differences in acetylcholinesterase content between the spinal ventral and dorsal roots, we developed a novel quartz crystal microbalance method to distinguish between these nerves based on acetylcholinesterase antibody reactivity. The acetylcholinesterase antibody was immobilized on the electrode surface of a quartz crystal microbalance and reacted with the acetylcholinesterase in sample solution. The formed antigen and antibody complexes added to the mass of the electrode inducing a change in frequency of the electrode. The spinal ventral and dorsal roots were distinguished by the change in frequency. The ventral and dorsal roots were cut into 1 to 2-mm long segments and then soaked in 250 pL PBS. Acetylcholinesterase antibody was immobilized on the quartz crystal microbalance gold electrode surface. The results revealed that in 10 minutes, both spinal ventral and dorsal roots induced a frequency change; however, the frequency change induced by the ventral roots was notably higher than that induced by the dorsal roots. No change was induced by bovine serum albumin or PBS. These results clearly demonstrate that a quartz crystal microbalance sensor can be used as a rapid, highly sensitive and accurate detection tool for the quick identification of spinal nerve roots intraoperatively.
基金supported by the National Natural Science Foundation of China(11272127 and 51435006)the Research Fund for the Doctoral Program of Higher Education of China(20130142110022)
文摘We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account the continuous conditions of shear force and bending moment at the interface of MBs/resonator, dependences of frequency shift of the compound QCR system versus material parameter and geometrical parameter are illustrated in detail for nonlinear and linear vibrations. It is found that the frequency shift produces a little right (left) translation for increasing elastic modulus (length/radius ratio) of MBs. Moreover, the frequency right (left) translation distance caused by nonlinear deformation becomes more serious in the second-order mode than in the first-order one,
基金Project supported by the National Natural Science Foundation of China(Nos.61876059 and U1501251)
文摘An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sensitive oscillator that has experienced airflow disturbances under the condition of varying room temperatures due to unstable flow-induced forces on the sensors surfaces. The three-dimensional (3D) nature of the airflow inside the sensor box and the interactions of the airflow on the sensors surfaces at different temperatures are studied by computational fluid dynamics (CFD) tools. Higher simulation accuracy is achieved by optimizing meshes, meshing the computational domain using a fine unstructural tetrahedron mesh. An optimum temperature, 30 ℃, is obtained by analyzing the distributions of velocity streamlines and the static pressure, as well as the flow-induced forces over time, all of which may be used to improve the identification accuracy of the electronic-nose for achieving stable and repeatable signals by removing the influence of temperature.
文摘In this study, we have used a direct immunoassay where the simple binding between antigen and an antibody is detected. Immunoassays were performed in a drop system, monitoring the frequency decrease of the quartz-crystal microbalance device because of mass increasing during immunoreaction. The QCM sensor was coated on both sides by gold electrodes, only one side of the crystal (liquid side) was in contact with the solution;the other side (contact side) was always dry. We tested a piezoelectric immunosensor for aflatoxin B1 (AFLA-B1) mycotoxin detection through the immo- bilization of DSP-anti-AFLAB1 antibody (AFLA-B1-Ab anti AFLAB1) on gold-coated quartz crystals (AT-cut/5 MHz). The DSP (3,3’-Dithiodipropionic-acid-di-N-hydroxysuccinimide ester) was used for the covalent attachment of the proteins. The piezoelectric crystal electrodes were pretreated by DSP for 15 min, rinsed with water and dried in a gentle flow of nitrogen gas. Then the DSP-coated crystals were installed in a sample holder and exposed to the anti-AFLAB1 antibody and to the AFLA-BI. Frequency and resistance shifts (Δf and ΔR) were measured simultaneously. Δf versus AFLA-BI concentrations in the range of 0.5 - 10 ppb exhibited a perfect linear correlation with a coefficient of above 0.998.
文摘A dichlorosilane gas and a trichlorosilane gas in ambient hydrogen were evaluated to show their different gas flow motions in a slim vertical cold wall chemical vapor deposition reactor for the Minimal Fab system. This evaluation was performed for improving and controlling the film qualities and the productivities, using two quartz crystal microbalances (QCM) installed at the </span><span style="font-family:Verdana;">inlet and exhaust of the chamber by taking into account that the QCM frequency corresponds to the real time changes in the gas properties.</span><span style="font-family:Verdana;"> Typically, the time period approaching from the inlet to the exhaust was shorter for the trichlorosilane gas than that for the dichlorosilane gas. The trichlorosilane gas was shown to move like plug flow, while the dichlorosilane gas seemed to be well mixed in the entire chamber.
文摘Low-frequency double-resonance quartz crystal oscillator was developed with active inductance circuit aiming the start-up of stable oscillation of tuning fork-type quartz crystal resonator at 32.768 kHz within 0.37 ms. The initial oscillation is triggered by a part of crystal oscillator forming a CR oscillator. The negative resistance ranges to 4 MΩ at gmf of 4.1 μA/V. In a limited frequency range, the circuit shows negative reactance Ccci = -3.4 pF equivalent to inductance Lcc = 9.8 H. The Allan standard deviation indicated 10-11 to 10-10, showing high stability comparable to general quartz crystal oscillator.
文摘The aim of the present investigation was to develop a biosensor for the detection of amino acids, Leucine, Isoleucine and Valine based on a quartz crystal nanobalance. leucine (Leu), isoleucine (Ile), and valine (Val) were selectively determined by quartz crystal nanobalance (QCN) sensor in conjunction with net analyte signal (NAS)-based method called HLA/GO. An orthogonal design was applied for the formation of calibration and prediction sets including Leu, Ile and Val compounds. The selection of the optimal time range involved the calculation of the net analyte sig-nal regression plot in any considered time window for each test sample. The searching of a region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value was carried out by applying a moving window strategy. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 300 s were used to determine mixtures of compounds by HLA/GO method. The results showed that the method was successfully applied for the determina-tion of Leu, Ile and Val.
基金supported by the National Natural Science Foundation of China(No.20275021)
文摘An unexpected frequency response for a piezoelectric quartz crystal (PQC) sensor to liquid density and viscosity was reported. For a PQC oscillating in a liquid phase, the frequency shifts (?f ) show a wave-shape response to liquid density (ρ) and viscosity (η) in fine structure, if the longitudinal wave effect was not eliminated. This result is different from the well-known linear relationship between of ?f and (ρη)1/2. An oscillating frequency-temperature curve of the sensor was observed and explained.