The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercool...The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory. Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystaltized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.展开更多
Crystal structure and crystallinity of carbon nitride support, size and dispersity of active-metal nanoparticles(NPs), and surface engineering of composites have great roles in generation and separation of photogenera...Crystal structure and crystallinity of carbon nitride support, size and dispersity of active-metal nanoparticles(NPs), and surface engineering of composites have great roles in generation and separation of photogenerated charge carries and photocatalyzed organic reactions for the conversion of solar energy into chemical energy. Herein, we deposited well-dispersed Pd NPs with small size on crystallized carbon nitride(CN–C) to construct a Schottky-type Pd/CN–C hybrid for photocatalyzed Ullmann C–C homocoupling of aryl halides under visible light irradiation at room temperature. Compared to Pd NPs supported g-C_3N_4(Pd/g-C_3N_4), Pd/CN–C exhibits excellent visible light photocatalytic activity for Ullmann C–C coupling of aryl halides due to high crystallinity of CN–C support, high dispersion and smaller size of Pd NPs, and the interfacial heterojunction of Pd/CN–C. Upon visible light irradiation, more photogenerated electrons from CN–C flow across the Schottky junction to metallic Pd and trigger the Ullmann C–C coupling of aryl halides. The photogenerated holes on CN–C surface are captured by a protic solvent(such as EtOH). In the presence of base K_2CO_3, the solvent undergoes dissociation, dehydrogenation, and finally can be oxidized by captured photogenerated holes. Moreover, Pd/CN–C has general applicability for various substrates and shows excellent stability and reusability for more than nine cycles.展开更多
Well known for their good performance,thin film transistors (TFTs) with active layers which were nickel induced laterally crystallized,are fabricated by conventional process of dual gate CMOS.The influence of pre h...Well known for their good performance,thin film transistors (TFTs) with active layers which were nickel induced laterally crystallized,are fabricated by conventional process of dual gate CMOS.The influence of pre high temperature treatment of device fabrication on the performance of TFTs is also investigated.The experiment shows that the high temperature treatment affects the performance of the devices strongly.The best performance is obtained by adopting pre treatment of 1000℃.The mobility of 314cm 2/(V·s) is obtained at NMOS TFTs with pre treatment of 1000℃,which is 10% and 22% higher than that treated at 1100℃ and without pre high temperature treatment,respectively.A maximum on/off current ratio of 3×10 8 is also obtained at 1000℃.Further investigation of uniformity verifies that the result is reliable.展开更多
The objective of the present study was to alter the crystal habit of itraconazole(ITZ)by cooling and anti-solvent crystallization and characterize its properties.ITZ was recrystallized in different solvents and the ef...The objective of the present study was to alter the crystal habit of itraconazole(ITZ)by cooling and anti-solvent crystallization and characterize its properties.ITZ was recrystallized in different solvents and the effects of each solvent on morphology of crystals,dissolution behavior and solid state of recrystallized drug particles were investigated.The results revealed that ITZ crystals recrystallized by cooling and anti-solvent crystallization showed the different crystal habits from the untreated ITZ.Using cooling crystallization tended to provide needle-shaped crystals while the crystals obtained from anti-solvent crystallization showed more flaky,plate shape.This indicated the importance of preparation method on nucleation and crystal growth.No change in drug polymorphism was observed,according to determination of thermal property and crystalline state by differential scanning calorimetry and powder X-ray diffractometry,respectively.The recrystallized ITZ showed higher drug dissolution than untreated ITZ and the highest drug dissolution was observed from the samples recrystallized in the presence of PEG 200,which provided the small plate-shaped crystals with tremendously increased in surface area.However,the increasing of drug dissolution is relatively small,therefore,further development may be required.展开更多
Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The cry...Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The crystallization is found to be related to the distance between the neighboring nickel-introducing MIC windows. Trace nickel that diffuses from the MIC window into the a-Si matrix during the MIC heat-treatment is experimentally discovered, which is responsible for the crystallization of the a-Si beyond the MIC front. A minimum diffusion coefficient of 1.84×10^-9cm^2/s at 550℃ is estimated for the trace nickel diffusion in a-Si.展开更多
An electrostatic reduced gravity device was developed and used specially for the study of the melt crystallization of polypropylene. The crystal structure of melt crystallized polypropylene prepared under the reduc...An electrostatic reduced gravity device was developed and used specially for the study of the melt crystallization of polypropylene. The crystal structure of melt crystallized polypropylene prepared under the reduced gravity environment was investigated by using X ray diffraction. The experiment results show that the crystal structure of the polypropylene is strongly dependent on the gravity applied to the sample during solidification. It is found that the crystallographic parameters a and b increase markedly with reduced gravity ratio, while the value of c increases mildly.展开更多
The phase composition of melt-spun Nd-Fe-B with intermediate and high Nd concentrations has been studied by Mössbauer effect.Based on the knowledge of the ^(57)Fe hyperfine parameters for Nd_(2)Fe_(14)B,Nd_(2)Fe_...The phase composition of melt-spun Nd-Fe-B with intermediate and high Nd concentrations has been studied by Mössbauer effect.Based on the knowledge of the ^(57)Fe hyperfine parameters for Nd_(2)Fe_(14)B,Nd_(2)Fe_(23)B_(3),and Nd_(1.1)Fe_(4)B_(4),the phases produced during annealing Nd-Fe-B amorphous alloys can be identified.It is found that the Nd_(x)Fe_(81.5-x)B_(18.5) samples with 7≤x≤9 contain the Nd_(2)Fe_(23)B_(3) metastable phase and the Nd1.1Fe4B4 paramagnetic phase.The body-centered-cubic structure of Nd_(2)Fe_(23)B_(3) cannot generate the hard magnetic properties.The samples with 12≤x≤15 consist of the Nd_(2)Fe_(14)B hard magnetic phase and the Nd1.1Fe4B4 paramagnetic phase.The large coercivity for the high Nd content Nd-Fe-B originates from the very fine size of Nd_(2)Fe_(14)B grains below the particle size of the single domain,which may contribute to a pinning effect of domain wall.展开更多
The title compound, C18H17BrO6 (Mr = 409.23), was synthesized as angiogenesis inhibitor and structurally characterized by ^1H-NMR, ^13C-NMR, MS, elemental analysis and X-ray single-crystal diffraction. Structure ana...The title compound, C18H17BrO6 (Mr = 409.23), was synthesized as angiogenesis inhibitor and structurally characterized by ^1H-NMR, ^13C-NMR, MS, elemental analysis and X-ray single-crystal diffraction. Structure analysis indicates that the title compound is of triclinic, space group P1^-, with a = 8.100(3), b = 10.536(4), c = 11.689(5)A, a = 67.405(7), βl = 69.736(3), γ = 88.510(5)°, V = 857.3(5) A^3, Z = 2, Dc = 1.585 g/cm^3, μ = 2.429 mm^-1, F(000) = 416, the finial R = 0.0356 and wR = 0.0929 for 2541 observed reflections. The bond lengths of C(7)-C(16) proved that the title compound possesses coumarin rather than flavone scaffold.展开更多
The crystallization behaviour of amorphous Al_(85)Ni_(10)Y_(5) alloy under high pressure was investigated.Results showed that the amorphous state can be preserved when the alloy is treated under high pressure at tempe...The crystallization behaviour of amorphous Al_(85)Ni_(10)Y_(5) alloy under high pressure was investigated.Results showed that the amorphous state can be preserved when the alloy is treated under high pressure at temperature below 325℃,the polytropic crystallization takes place when the alloy is treated at 325〜520 ℃ and 3〜6GPa for 1 min;the crystallizing product is nanometer scale supersaturated fee-Al solid solution particles dispersed in amorphous matrix;under 1 GPa pressure amorphous allloy crystallizes in an eutectic way,the crystallizing products are fee-Al,Al_(3)Y,Al_(3)Ni,AlNiY equilibrium crystalline phases etc.High pressure appreciably changes the crystallization mode and the products,elevates the crystallizing temperature.展开更多
Pyrene solution and distilled water were flowed through a microreactor at a predetermined flow rate to generate pyrene crystals. Pyrene nanocrystals were crystallized by a Continuous Flow Microreactor. The particle si...Pyrene solution and distilled water were flowed through a microreactor at a predetermined flow rate to generate pyrene crystals. Pyrene nanocrystals were crystallized by a Continuous Flow Microreactor. The particle size and luminescence properties of pyrene nanocrystals produced were evaluated. The crystal mean size between 60 nm and 400 nm could be controlled by the operating conditions. The crystal mean size decreased with increasing flow rate and solution concentration. In addition, the crystal morphology also changed. In the case of slow flow conditions, a needle-like crystal morphology was obtained. The crystal morphology became spherical on increasing the flow rate. Pyrene crystals with size about 400 nm exhibited luminescence at about 470 nm. As the crystal size decreased, the intensity of the luminescence also declined. The luminescence wavelength was in the range of about 370 to 400 nm.展开更多
BACKGROUND Cognitive reserve(CR)and the catechol-O-methyltransferase(COMT)Val/Met polymorphism are reportedly linked to negative symptoms in schizophrenia.However,the regulatory effect of the COMT genotype on the rela...BACKGROUND Cognitive reserve(CR)and the catechol-O-methyltransferase(COMT)Val/Met polymorphism are reportedly linked to negative symptoms in schizophrenia.However,the regulatory effect of the COMT genotype on the relationship between CR and negative symptoms is still unexamined.AIM To investigate whether the relationship between CR and negative symptoms could be regulated by the COMT Val/Met polymorphism.METHODS In a cross-sectional study,54 clinically stable patients with schizophrenia underwent assessments for the COMT genotype,CR,and negative symptoms.CR was estimated using scores in the information and similarities subtests of a short form of the Chinese version of the Wechsler Adult Intelligence Scale.RESULTS COMT Met-carriers exhibited fewer negative symptoms than Val homozygotes.In the total sample,significant negative correlations were found between negative symptoms and information,similarities.Associations between information,similarities and negative symptoms were observed in Val homozygotes only,with information and similarities showing interaction effects with the COMT genotype in relation to negative symptoms(information,β=-0.282,95%CI:-0.552 to-0.011,P=0.042;similarities,β=-0.250,95%CI:-0.495 to-0.004,P=0.046).CONCLUSION This study provides initial evidence that the association between negative symptoms and CR is under the regulation of the COMT genotype in schizophrenia.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typicall...Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.展开更多
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ...We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv...Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
The formation,thermal stability,crystallized structure,and magnetic properties of melt-spun Co80-xSmxB20(x=0–20)amorphous alloys have been investigated.A single amorphous phase is formed for the alloys with x=0–15.T...The formation,thermal stability,crystallized structure,and magnetic properties of melt-spun Co80-xSmxB20(x=0–20)amorphous alloys have been investigated.A single amorphous phase is formed for the alloys with x=0–15.The first crystallization temperature gradually increases from 670 to 955 K as x increases from 0 to 10,and decreases to 836K when x=15.After optimum annealing,the nanocomposite structure consisting of SmCo12B6+fcc-Co+Sm2Co17 phases is formed for the alloys with x=5 and 7.5,and SmCo12B6+Sm2Co17+SmCo3,SmCo12B6+Sm2Co17+SmCo4B,and SmCo12B6+SmCo4B phases are formed for the alloys with x=10,12.5,and 15,respectively.The coercivity of the annealed alloys increases remarkably from 103.5 to 1249.4 kA m^-1 as x increases from 5 to 15,while the magnetization at the applied field of 2.0T decreases from 0.51 to 0.16T.The improved magnetic hardness with rising Sm content is attributed to the formation of the hard magnetic phases with higher magnetocrystalline anisotropy and the increase in their volume fraction.展开更多
Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cool...Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.展开更多
文摘The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory. Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystaltized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.
基金financially supported by the National Natural Science Foundation of China(No.21503127)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2017JM2008)the 111 Project(B14041)
文摘Crystal structure and crystallinity of carbon nitride support, size and dispersity of active-metal nanoparticles(NPs), and surface engineering of composites have great roles in generation and separation of photogenerated charge carries and photocatalyzed organic reactions for the conversion of solar energy into chemical energy. Herein, we deposited well-dispersed Pd NPs with small size on crystallized carbon nitride(CN–C) to construct a Schottky-type Pd/CN–C hybrid for photocatalyzed Ullmann C–C homocoupling of aryl halides under visible light irradiation at room temperature. Compared to Pd NPs supported g-C_3N_4(Pd/g-C_3N_4), Pd/CN–C exhibits excellent visible light photocatalytic activity for Ullmann C–C coupling of aryl halides due to high crystallinity of CN–C support, high dispersion and smaller size of Pd NPs, and the interfacial heterojunction of Pd/CN–C. Upon visible light irradiation, more photogenerated electrons from CN–C flow across the Schottky junction to metallic Pd and trigger the Ullmann C–C coupling of aryl halides. The photogenerated holes on CN–C surface are captured by a protic solvent(such as EtOH). In the presence of base K_2CO_3, the solvent undergoes dissociation, dehydrogenation, and finally can be oxidized by captured photogenerated holes. Moreover, Pd/CN–C has general applicability for various substrates and shows excellent stability and reusability for more than nine cycles.
文摘Well known for their good performance,thin film transistors (TFTs) with active layers which were nickel induced laterally crystallized,are fabricated by conventional process of dual gate CMOS.The influence of pre high temperature treatment of device fabrication on the performance of TFTs is also investigated.The experiment shows that the high temperature treatment affects the performance of the devices strongly.The best performance is obtained by adopting pre treatment of 1000℃.The mobility of 314cm 2/(V·s) is obtained at NMOS TFTs with pre treatment of 1000℃,which is 10% and 22% higher than that treated at 1100℃ and without pre high temperature treatment,respectively.A maximum on/off current ratio of 3×10 8 is also obtained at 1000℃.Further investigation of uniformity verifies that the result is reliable.
基金Financial support from The Thailand Research Fund(grant number BRG5480013)is greatly acknowledged.
文摘The objective of the present study was to alter the crystal habit of itraconazole(ITZ)by cooling and anti-solvent crystallization and characterize its properties.ITZ was recrystallized in different solvents and the effects of each solvent on morphology of crystals,dissolution behavior and solid state of recrystallized drug particles were investigated.The results revealed that ITZ crystals recrystallized by cooling and anti-solvent crystallization showed the different crystal habits from the untreated ITZ.Using cooling crystallization tended to provide needle-shaped crystals while the crystals obtained from anti-solvent crystallization showed more flaky,plate shape.This indicated the importance of preparation method on nucleation and crystal growth.No change in drug polymorphism was observed,according to determination of thermal property and crystalline state by differential scanning calorimetry and powder X-ray diffractometry,respectively.The recrystallized ITZ showed higher drug dissolution than untreated ITZ and the highest drug dissolution was observed from the samples recrystallized in the presence of PEG 200,which provided the small plate-shaped crystals with tremendously increased in surface area.However,the increasing of drug dissolution is relatively small,therefore,further development may be required.
基金supported by the National Natural Science Foundation of China(Grant Nos.61301077 and 61574096)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130319)the Science and Technology Program of Suzhou City,China(Grant No.SYG201538)
文摘Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The crystallization is found to be related to the distance between the neighboring nickel-introducing MIC windows. Trace nickel that diffuses from the MIC window into the a-Si matrix during the MIC heat-treatment is experimentally discovered, which is responsible for the crystallization of the a-Si beyond the MIC front. A minimum diffusion coefficient of 1.84×10^-9cm^2/s at 550℃ is estimated for the trace nickel diffusion in a-Si.
文摘An electrostatic reduced gravity device was developed and used specially for the study of the melt crystallization of polypropylene. The crystal structure of melt crystallized polypropylene prepared under the reduced gravity environment was investigated by using X ray diffraction. The experiment results show that the crystal structure of the polypropylene is strongly dependent on the gravity applied to the sample during solidification. It is found that the crystallographic parameters a and b increase markedly with reduced gravity ratio, while the value of c increases mildly.
基金Supported by the National Natural Science Foundation of China under Grant No.59525101.
文摘The phase composition of melt-spun Nd-Fe-B with intermediate and high Nd concentrations has been studied by Mössbauer effect.Based on the knowledge of the ^(57)Fe hyperfine parameters for Nd_(2)Fe_(14)B,Nd_(2)Fe_(23)B_(3),and Nd_(1.1)Fe_(4)B_(4),the phases produced during annealing Nd-Fe-B amorphous alloys can be identified.It is found that the Nd_(x)Fe_(81.5-x)B_(18.5) samples with 7≤x≤9 contain the Nd_(2)Fe_(23)B_(3) metastable phase and the Nd1.1Fe4B4 paramagnetic phase.The body-centered-cubic structure of Nd_(2)Fe_(23)B_(3) cannot generate the hard magnetic properties.The samples with 12≤x≤15 consist of the Nd_(2)Fe_(14)B hard magnetic phase and the Nd1.1Fe4B4 paramagnetic phase.The large coercivity for the high Nd content Nd-Fe-B originates from the very fine size of Nd_(2)Fe_(14)B grains below the particle size of the single domain,which may contribute to a pinning effect of domain wall.
基金Supported by NNSFC (No. 30500631)Graduate Innovative Research Foundation of Fudan University
文摘The title compound, C18H17BrO6 (Mr = 409.23), was synthesized as angiogenesis inhibitor and structurally characterized by ^1H-NMR, ^13C-NMR, MS, elemental analysis and X-ray single-crystal diffraction. Structure analysis indicates that the title compound is of triclinic, space group P1^-, with a = 8.100(3), b = 10.536(4), c = 11.689(5)A, a = 67.405(7), βl = 69.736(3), γ = 88.510(5)°, V = 857.3(5) A^3, Z = 2, Dc = 1.585 g/cm^3, μ = 2.429 mm^-1, F(000) = 416, the finial R = 0.0356 and wR = 0.0929 for 2541 observed reflections. The bond lengths of C(7)-C(16) proved that the title compound possesses coumarin rather than flavone scaffold.
基金Supported by the National Natural Science Foundation of China。
文摘The crystallization behaviour of amorphous Al_(85)Ni_(10)Y_(5) alloy under high pressure was investigated.Results showed that the amorphous state can be preserved when the alloy is treated under high pressure at temperature below 325℃,the polytropic crystallization takes place when the alloy is treated at 325〜520 ℃ and 3〜6GPa for 1 min;the crystallizing product is nanometer scale supersaturated fee-Al solid solution particles dispersed in amorphous matrix;under 1 GPa pressure amorphous allloy crystallizes in an eutectic way,the crystallizing products are fee-Al,Al_(3)Y,Al_(3)Ni,AlNiY equilibrium crystalline phases etc.High pressure appreciably changes the crystallization mode and the products,elevates the crystallizing temperature.
文摘Pyrene solution and distilled water were flowed through a microreactor at a predetermined flow rate to generate pyrene crystals. Pyrene nanocrystals were crystallized by a Continuous Flow Microreactor. The particle size and luminescence properties of pyrene nanocrystals produced were evaluated. The crystal mean size between 60 nm and 400 nm could be controlled by the operating conditions. The crystal mean size decreased with increasing flow rate and solution concentration. In addition, the crystal morphology also changed. In the case of slow flow conditions, a needle-like crystal morphology was obtained. The crystal morphology became spherical on increasing the flow rate. Pyrene crystals with size about 400 nm exhibited luminescence at about 470 nm. As the crystal size decreased, the intensity of the luminescence also declined. The luminescence wavelength was in the range of about 370 to 400 nm.
基金Supported by the National Natural Science Foundation of China,No.81971250 and No.82171501Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support,No.ZLRK202335Early Psychosis Cohort Program of Beijing Anding Hospital,No.ADDL-03.
文摘BACKGROUND Cognitive reserve(CR)and the catechol-O-methyltransferase(COMT)Val/Met polymorphism are reportedly linked to negative symptoms in schizophrenia.However,the regulatory effect of the COMT genotype on the relationship between CR and negative symptoms is still unexamined.AIM To investigate whether the relationship between CR and negative symptoms could be regulated by the COMT Val/Met polymorphism.METHODS In a cross-sectional study,54 clinically stable patients with schizophrenia underwent assessments for the COMT genotype,CR,and negative symptoms.CR was estimated using scores in the information and similarities subtests of a short form of the Chinese version of the Wechsler Adult Intelligence Scale.RESULTS COMT Met-carriers exhibited fewer negative symptoms than Val homozygotes.In the total sample,significant negative correlations were found between negative symptoms and information,similarities.Associations between information,similarities and negative symptoms were observed in Val homozygotes only,with information and similarities showing interaction effects with the COMT genotype in relation to negative symptoms(information,β=-0.282,95%CI:-0.552 to-0.011,P=0.042;similarities,β=-0.250,95%CI:-0.495 to-0.004,P=0.046).CONCLUSION This study provides initial evidence that the association between negative symptoms and CR is under the regulation of the COMT genotype in schizophrenia.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO,the Samsung Research Funding&Incubation Center for Future Technology grant(SRFC-IT1901-52)funded by Samsung Electronicsthe National Research Foundation(NRF)grants(NRF-2022M3C1A3081312,NRF-2022M3H4A1A-02074314,NRF-2022M3H4A1A02046445,NRF-2021M3H4A1A04086357,NRF-2019R1A5A8080290,RS-2024-00356928,RS-2023-00283667)funded by the Ministry of Science and ICT of the Korean governmentthe Korea Evaluation Institute of Industrial Technology(KEIT)grant(No.1415185027/20019169,Alchemist project)funded by the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government.H.Kim and J.Kim acknowledge the POSTECH Alchemist fellowship,the Asan Foundation Biomedical Science fellowship,and Presidential Science fellowship funded by the MSIT of the Korean government.
文摘Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.
文摘We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
基金the Science and Technology Key Project of Anhui Province,China(No.2022e03020004).
文摘Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.51871039,51571047,and 51771039)the Fundamental Research Funds for the Central Universities(DUT17ZD212).
文摘The formation,thermal stability,crystallized structure,and magnetic properties of melt-spun Co80-xSmxB20(x=0–20)amorphous alloys have been investigated.A single amorphous phase is formed for the alloys with x=0–15.The first crystallization temperature gradually increases from 670 to 955 K as x increases from 0 to 10,and decreases to 836K when x=15.After optimum annealing,the nanocomposite structure consisting of SmCo12B6+fcc-Co+Sm2Co17 phases is formed for the alloys with x=5 and 7.5,and SmCo12B6+Sm2Co17+SmCo3,SmCo12B6+Sm2Co17+SmCo4B,and SmCo12B6+SmCo4B phases are formed for the alloys with x=10,12.5,and 15,respectively.The coercivity of the annealed alloys increases remarkably from 103.5 to 1249.4 kA m^-1 as x increases from 5 to 15,while the magnetization at the applied field of 2.0T decreases from 0.51 to 0.16T.The improved magnetic hardness with rising Sm content is attributed to the formation of the hard magnetic phases with higher magnetocrystalline anisotropy and the increase in their volume fraction.
基金financially supported by a grant provided by Mitsubishi Heavy Industries。
文摘Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.