Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
Organic perovskites are promising semiconductor materials for advanced photoelectric applications.Their fluorescence typically shows a negative temperature coefficient due to bandgap change and structural instability....Organic perovskites are promising semiconductor materials for advanced photoelectric applications.Their fluorescence typically shows a negative temperature coefficient due to bandgap change and structural instability.In this study,a novel perovskite-based composite with positive sensitivity to temperature was designed and obtained based on its inverse temperature crystallization,demonstrating good flexibility and solution processability.The supercritical drying method was used to address the limitations of annealing drying in preparing high-performance perovskite.Optimizing the precursor composition proved to be an effective approach for achieving high fluorescence and structural integrity in the perovskite material.This perovskite-based composite exhibited a positive temperature sensitivity of 28.563%℃^(-1)for intensity change and excellent temperature cycling reversibility in the range of 25-40℃in an ambient environment.This made it suitable for use as a smart window with rapid response.Furthermore,the perovskite composite was found to offer temperature-sensing photoluminescence and flexible processability due to its components of perovskite-based compounds and polyethylene oxide.The organic precursor solvent could be a promising candidate for use as ink to print or write on various substrates for optoelectronic devices responding to temperature.展开更多
Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explo...Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.展开更多
Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for ...Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.展开更多
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean...Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.展开更多
Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechani...Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechanisms on the lower molding temperature limit and molding time in dental thermoforming. Ethylene vinyl acetate resin mouthguard sheet and two thermoforming machines;vacuum blower molding machine and vacuum ejector/pressure molding machine were used. The molding pressures for suction molding were −0.018 MPa for vacuum blower molding and −0.090 MPa for vacuum ejector molding, and for pressure molding was set to 0.090 MPa or 0.450 MPa. Based on the manufacturer’s standard molding temperature of 95˚C, the molding temperature was lowered in 2.5˚C increments to determine the lower molding temperature limit at which no molding defects occurred. In order to investigate the difference in molding time depending on the molding mechanism, the duration of molding pressure was adjusted in each molding machine, and the molding time required to obtain a sample without molding defects was measured. The molding time of each molding machine were compared using one-way analysis of variance. The lower molding temperature limit was 90.0˚C for the vacuum blower machine, 77.5˚C for the vacuum ejector machine, 77.5˚C for the pressure molding machine at 0.090 MPa, and 67.5˚C for the pressure molding machine at 0.45 MPa. The lower molding temperature limit was higher for lower absolute values of molding pressure. The molding time was shorter for pressure molding than for suction molding. Significant differences were observed between all conditions except between the pressure molding machine at 0.090 MPa and 0.45 MPa (P < 0.01). A comparison of the differences in lower molding temperature limit and molding time due to molding mechanisms in dental thermoforming revealed that the lower molding temperature limit depends on the molding pressure and that the molding time is longer for suction molding than for pressure molding.展开更多
Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the r...Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.展开更多
A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film(CPCF)is developed based on particle deformation models and previous real-time crack observations. The crac...A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film(CPCF)is developed based on particle deformation models and previous real-time crack observations. The crack propagation process and temperature dependence of the crack propagation rate in CPCF are investigated. By this method, the crack propagation rate is found to slow down gradually to zero when cracks become more numerous and dense. Meanwhile, with the temperature increasing, the crack propagation rate constant decreases. The negative temperature dependence of the crack propagation rate is due to the increase of van der Waals attraction, which finally results in the decrease of resultant force. The findings provide new insight into the crack propagation process in CPCF.展开更多
Well known for their good performance,thin film transistors (TFTs) with active layers which were nickel induced laterally crystallized,are fabricated by conventional process of dual gate CMOS.The influence of pre h...Well known for their good performance,thin film transistors (TFTs) with active layers which were nickel induced laterally crystallized,are fabricated by conventional process of dual gate CMOS.The influence of pre high temperature treatment of device fabrication on the performance of TFTs is also investigated.The experiment shows that the high temperature treatment affects the performance of the devices strongly.The best performance is obtained by adopting pre treatment of 1000℃.The mobility of 314cm 2/(V·s) is obtained at NMOS TFTs with pre treatment of 1000℃,which is 10% and 22% higher than that treated at 1100℃ and without pre high temperature treatment,respectively.A maximum on/off current ratio of 3×10 8 is also obtained at 1000℃.Further investigation of uniformity verifies that the result is reliable.展开更多
According to the Doehlert's matrix method, the adsorbent derived from sewage sludge was prepared through chemical activation under controlling the pyrolysis temperature and hold time. The characteristic parameters...According to the Doehlert's matrix method, the adsorbent derived from sewage sludge was prepared through chemical activation under controlling the pyrolysis temperature and hold time. The characteristic parameters including the total yield, adsorption of methylene blue, adsorption of iodine, BET surface area, micro-pore volume are 35%—49%, 16.5—38 mg/g, 285—362 mg/g, 185—359 m2/g, and 0.112—0.224 m3/g, respectively. According to the experimental data, the multi-linear regression method was adopted to fit the relations between the characteristic parameters and influential factors. At final, through optimization method, the optimal adsorbent is obtained when using 62 min as hold time and 1105K as pyrolysis temperature. Under the conditions, the adsorbent was produced and compared the characteristic parameters with model forecast value, the coherence is satisfied.展开更多
The factors influencing the crystallization ratio of mold flux were researched by rapid cooling technolo gy, and the factors affecting crystallization temperature were studied by single thermocouple technique. The res...The factors influencing the crystallization ratio of mold flux were researched by rapid cooling technolo gy, and the factors affecting crystallization temperature were studied by single thermocouple technique. The results showed that the crystallization ratio of mold flux increases with the basicity and the content of Na2O, CaF2, Li2O and NaF, and decreases with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. However, the crystallization temperature of mold flux rises with the basicity and the content of NaF, Na2O and CaF2, and reduces with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. But for Li2O, crystallization temperature decreases firstly to a minimum value at 2%, and then increases gradually with the increase of Li2O.展开更多
In this study,the effect of decarburization annealing temperature and time on the carbon content,microstructure,and texture of grain-oriented pure iron was investigated by optical microscopy and scanning electron micr...In this study,the effect of decarburization annealing temperature and time on the carbon content,microstructure,and texture of grain-oriented pure iron was investigated by optical microscopy and scanning electron microscopy with electron-backscatter diffraction. The results showed that the efficiency of decarburization dramatically increased with increasing decarburization temperature. However,when the annealing temperature was increased to 825°C and 850°C,the steel's carbon content remained essentially unchanged at 0.002%. With increasing decarburization time,the steel's carbon content generally decreased. When both the decarburization temperature and time were increased further,the average grain size dramatically increased and the number of fine grains decreased; meanwhile,some relatively larger grains developed. The main texture types of the decarburized sheets were approximately the same: {001}<110> and {112~115}<110>,with a γ-fiber texture. Furthermore,little change was observed in the texture. Compared with the experimental sheets,the texture of the cold-rolled sheet was very scattered. The best average magnetic induction(B_(800)) among the final products was 1.946 T.展开更多
Objective:To study the number of leptospirosis cases in relations to the seasonal pattern,and its association with climate factors.Methods:Time series analysis was used to study the time variations in the number of le...Objective:To study the number of leptospirosis cases in relations to the seasonal pattern,and its association with climate factors.Methods:Time series analysis was used to study the time variations in the number of leptospirosis cases.The Autoregressive Integrated Moving Average (ARIMA) model was used in data curve fitting and predicting the next leptospirosis cases. Results:We found that the amount of rainfall was correlated to leptospirosis cases in both regions of interest,namely the northern and northeastern region of Thailand,while the temperature played a role in the northeastern region only.The use of multivariate ARIMA(ARIMAX) model showed that factoring in rainfall(with an 8 months lag) yields the best model for the northern region while the model,which factors in rainfall(with a 10 months kg) and temperature(with an 8 months lag) was the best for the northeaslern region.Conclusions:The models are able to show the trend in leptospirosis cases and closely fit the recorded data in both regions.The models can also be used to predict the next seasonal peak quite accurately.展开更多
The inclusions in large diamond single crystals have effects on its ultimate performance, which restricts its industrial applications to a great extent. Therefore, it is necessary to study the inclusions systematicall...The inclusions in large diamond single crystals have effects on its ultimate performance, which restricts its industrial applications to a great extent. Therefore, it is necessary to study the inclusions systematically. In this paper, large diamond single crystals with different content values of inclusions are synthesized along the(100) surface by the temperature gradient method(TGM) under 5.6 GPa at different temperatures. With the synthetic temperature changing from 1200?C to 1270?C,the shapes of diamonds change from plate to low tower, to high tower, even to steeple. From the microscopic photographs of the diamond samples, it can be observed that with the shapes of the samples changing at different temperatures, the content values of inclusions in diamonds become zero, a little, much and most, correspondingly. Consequently, with the temperature growing from low to high, the content values of inclusions in crystals increase. The origin of inclusions is explained by the difference in growth rate between diamond crystal and its surface. The content values of inclusions in diamond samples are quantitatively calculated by testing the densities of diamond samples. And the composition and inclusion content are analyzed by energy dispersive spectroscopy(EDS) and x-ray diffraction(XRD). From contrasting scanning electron microscopy(SEM) photographs, it can be found that the more the inclusions in diamond, the more imperfect the diamond surface is.展开更多
We aim in this research at synthesizing high-purity aluminium titanate with sludge from the aluminium profile factory by shock cooling method, and mainly discuss the effect of calcining reaction temperature and holdin...We aim in this research at synthesizing high-purity aluminium titanate with sludge from the aluminium profile factory by shock cooling method, and mainly discuss the effect of calcining reaction temperature and holding time on crystalline, microstructure and content of aluminum titanate materials to determine the preferred calcining temperature and holding time. XRD and SEM methods were utilized to characterize the crystalline and microstructure of each specimen, Rietveld Quantification software was used for the determination of different crystalline contents of specimens, and Philips plus software was applied to determine the cell parameters of aluminium titanate in different specimens. According to the experimental results, preferred calcining temperature is determined as 1400℃ and preferred holding time is 2 h, at which the grains of aluminum titanate grow completely and the purity of aluminum titanate is 97.2wt%.展开更多
Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), a...Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation. Methods COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR. Results The removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor. Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃to 28℃.展开更多
The uniaxial time-dependent strain cyclic behaviors and ratcheting of SS304 stainless steel were studied at high temperatures (350 ℃ and 700 ℃). The effects of straining and stressing rates, holding time at the pe...The uniaxial time-dependent strain cyclic behaviors and ratcheting of SS304 stainless steel were studied at high temperatures (350 ℃ and 700 ℃). The effects of straining and stressing rates, holding time at the peak and/or valley of each cycle in addition to ambient temperature on the cyclic softening/hardening behavior and ratcheting of the material were discussed. It can be seen from experimental results that the material presents remarkable time dependence at 700 ℃, and the ratcheting strain depends greatly on the stressing rate, holding time and ambient temperature. Some significant conclusions are obtained, which are useful to build a constitutive model describiog the time-dependent cyclic deformation of the material.展开更多
Using radiosonde temperatures of 92 selected stations in China,the uncertainties in homogenization processes caused by different reference series,including nighttime temperature,the NCEP (National Centers for Environ...Using radiosonde temperatures of 92 selected stations in China,the uncertainties in homogenization processes caused by different reference series,including nighttime temperature,the NCEP (National Centers for Environmental Prediction) and ERA-40 (European Centre for Medium-Range Weather Forecasts) forecasting background,are examined via a two-phase regression approach.Although the results showed limited consistency in the temporal and spatial distribution of identified break points (BPs) in the context of metadata events of instrument model change and correction method,significant uncertainties still existed in BP identification,adjustment,and impact on the estimated trend.Reanalysis reference series generally led to more BP identification in homogenization.However,those differences were parts of global climatic shifts,which may have confused the BP calculations.Discontinuities also existed in the reanalysis series due to changes in the satellite input.The adjustment values deduced from the reanalysis series ranged widely and were larger than those from the nighttime series and,therefore,impacted the estimated temperature trend.展开更多
A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is sh...A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is shown that the high temperature plays a key role in the incorporation of hydrogen atoms during diamond crystallization.Fourier transform infrared micro-spectroscopy reveals that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp 3-CH 2-symmetric(2850 cm-1) and sp 3 CH 2-antisymmetric vibrations(2920 cm-1).The intensities of these peaks increase gradually with an increase in the content of the hydrogen source in the catalyst.The incorporation of hydrogen impurity leads to a significant shift towards higher frequencies of the Raman peak from 1332.06 cm-1 to 1333.05 cm-1 and gives rise to some compressive stress in the diamond crystal lattice.Furthermore,hydrogen to carbon bonds are evident in the annealed diamond,indicating that the bonds that remain throughout the annealing process and the vibration frequencies centred at 2850 and 2920 cm-1 have no observable shift.Therefore,we suggest that the sp 3 C-H bond is rather stable in diamond crystals.展开更多
We investigate the temperature field variation in the growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by using the temperature gradient method (TGM) at high pressure an...We investigate the temperature field variation in the growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by using the temperature gradient method (TGM) at high pressure and high temperature (HPHT). We employ both the finite element method (FEM) and in situ experiments. Simulation results show that the temperature in the center area of the growth cell continues to decrease during the process of large diamond crystal growth. These results are in good agreement with our experimental data, which demonstrates that the finite element model can successfully predict the temperature field variations in the growth cell. The FEM simulation will be useful to grow larger high-quality diamond crystal by using the TGM. Furthermore, this method will be helpful in designing better cells and improving the growth process of gem-quality diamond crystal.展开更多
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金the financial support from the National Natural Science Foundation of China(No.61904005,52103010 and 52003200)Guangdong Provincial Department of Education Featured Innovation Project(No.2021KTSCX138)+4 种基金Jiangmen Key Project of Research for Basic and Basic Application(No.2021030102800007443 and 2021030102790006114)the Science Foundation for Young Research Group of Wuyi University(No.2020AL021,2019AL019,and 2020AL016)Wuyi University-Hong Kong/Macao Joint Research Funds(No.2021WGALH05)Youth Innovation Talent Project for the Universities of Guangdong(No.2020KQNCX089)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110897)
文摘Organic perovskites are promising semiconductor materials for advanced photoelectric applications.Their fluorescence typically shows a negative temperature coefficient due to bandgap change and structural instability.In this study,a novel perovskite-based composite with positive sensitivity to temperature was designed and obtained based on its inverse temperature crystallization,demonstrating good flexibility and solution processability.The supercritical drying method was used to address the limitations of annealing drying in preparing high-performance perovskite.Optimizing the precursor composition proved to be an effective approach for achieving high fluorescence and structural integrity in the perovskite material.This perovskite-based composite exhibited a positive temperature sensitivity of 28.563%℃^(-1)for intensity change and excellent temperature cycling reversibility in the range of 25-40℃in an ambient environment.This made it suitable for use as a smart window with rapid response.Furthermore,the perovskite composite was found to offer temperature-sensing photoluminescence and flexible processability due to its components of perovskite-based compounds and polyethylene oxide.The organic precursor solvent could be a promising candidate for use as ink to print or write on various substrates for optoelectronic devices responding to temperature.
基金funded by the National Natural Science Foundation of China(Nos.51672310,51272288,51972344)。
文摘Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.
基金Project supported by the National Natural Science Foundation of China (No.12172001)the Anhui Provincial Natural Science Foundation of China (No.2208085Y01)+1 种基金the University Natural Science Research Project of Anhui Province of China (No.2022AH020029)the Housing and Urban-Rural Development Science and Technology Project of Anhui Province of China (No.2023-YF129)。
文摘Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.
基金The National Key R&D Program of China under contract No.2021YFC3101603.
文摘Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.
文摘Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechanisms on the lower molding temperature limit and molding time in dental thermoforming. Ethylene vinyl acetate resin mouthguard sheet and two thermoforming machines;vacuum blower molding machine and vacuum ejector/pressure molding machine were used. The molding pressures for suction molding were −0.018 MPa for vacuum blower molding and −0.090 MPa for vacuum ejector molding, and for pressure molding was set to 0.090 MPa or 0.450 MPa. Based on the manufacturer’s standard molding temperature of 95˚C, the molding temperature was lowered in 2.5˚C increments to determine the lower molding temperature limit at which no molding defects occurred. In order to investigate the difference in molding time depending on the molding mechanism, the duration of molding pressure was adjusted in each molding machine, and the molding time required to obtain a sample without molding defects was measured. The molding time of each molding machine were compared using one-way analysis of variance. The lower molding temperature limit was 90.0˚C for the vacuum blower machine, 77.5˚C for the vacuum ejector machine, 77.5˚C for the pressure molding machine at 0.090 MPa, and 67.5˚C for the pressure molding machine at 0.45 MPa. The lower molding temperature limit was higher for lower absolute values of molding pressure. The molding time was shorter for pressure molding than for suction molding. Significant differences were observed between all conditions except between the pressure molding machine at 0.090 MPa and 0.45 MPa (P < 0.01). A comparison of the differences in lower molding temperature limit and molding time due to molding mechanisms in dental thermoforming revealed that the lower molding temperature limit depends on the molding pressure and that the molding time is longer for suction molding than for pressure molding.
基金the financially support of the National Natural Science Foundation of China(12164051)the Joint Foundation of Provincial Science and Technology Department-Double First-class Construction of Yunnan University(2019FY003016)+4 种基金the Young Top Talent Project of Yunnan Province(YNWR-QNBJ-2018-229)the financially support by Yunnan Major Scientific and Technological Projects(202202AG050016)Advanced Analysis and Measurement Center of Yunnan University for the sample characterization service and the Postgraduate Research and Innovation Foundation of Yunnan University(2021Y036)the financially support of the National Natural Science Foundation of China(62064013)the Application Basic Research Project of Yunnan Province[2019FB130]。
文摘Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB932903 and 2012CB932904)the National Natural Science Foundation of China(Grant Nos.51372270,11474333,and 21173260)
文摘A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film(CPCF)is developed based on particle deformation models and previous real-time crack observations. The crack propagation process and temperature dependence of the crack propagation rate in CPCF are investigated. By this method, the crack propagation rate is found to slow down gradually to zero when cracks become more numerous and dense. Meanwhile, with the temperature increasing, the crack propagation rate constant decreases. The negative temperature dependence of the crack propagation rate is due to the increase of van der Waals attraction, which finally results in the decrease of resultant force. The findings provide new insight into the crack propagation process in CPCF.
文摘Well known for their good performance,thin film transistors (TFTs) with active layers which were nickel induced laterally crystallized,are fabricated by conventional process of dual gate CMOS.The influence of pre high temperature treatment of device fabrication on the performance of TFTs is also investigated.The experiment shows that the high temperature treatment affects the performance of the devices strongly.The best performance is obtained by adopting pre treatment of 1000℃.The mobility of 314cm 2/(V·s) is obtained at NMOS TFTs with pre treatment of 1000℃,which is 10% and 22% higher than that treated at 1100℃ and without pre high temperature treatment,respectively.A maximum on/off current ratio of 3×10 8 is also obtained at 1000℃.Further investigation of uniformity verifies that the result is reliable.
文摘According to the Doehlert's matrix method, the adsorbent derived from sewage sludge was prepared through chemical activation under controlling the pyrolysis temperature and hold time. The characteristic parameters including the total yield, adsorption of methylene blue, adsorption of iodine, BET surface area, micro-pore volume are 35%—49%, 16.5—38 mg/g, 285—362 mg/g, 185—359 m2/g, and 0.112—0.224 m3/g, respectively. According to the experimental data, the multi-linear regression method was adopted to fit the relations between the characteristic parameters and influential factors. At final, through optimization method, the optimal adsorbent is obtained when using 62 min as hold time and 1105K as pyrolysis temperature. Under the conditions, the adsorbent was produced and compared the characteristic parameters with model forecast value, the coherence is satisfied.
文摘The factors influencing the crystallization ratio of mold flux were researched by rapid cooling technolo gy, and the factors affecting crystallization temperature were studied by single thermocouple technique. The results showed that the crystallization ratio of mold flux increases with the basicity and the content of Na2O, CaF2, Li2O and NaF, and decreases with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. However, the crystallization temperature of mold flux rises with the basicity and the content of NaF, Na2O and CaF2, and reduces with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. But for Li2O, crystallization temperature decreases firstly to a minimum value at 2%, and then increases gradually with the increase of Li2O.
文摘In this study,the effect of decarburization annealing temperature and time on the carbon content,microstructure,and texture of grain-oriented pure iron was investigated by optical microscopy and scanning electron microscopy with electron-backscatter diffraction. The results showed that the efficiency of decarburization dramatically increased with increasing decarburization temperature. However,when the annealing temperature was increased to 825°C and 850°C,the steel's carbon content remained essentially unchanged at 0.002%. With increasing decarburization time,the steel's carbon content generally decreased. When both the decarburization temperature and time were increased further,the average grain size dramatically increased and the number of fine grains decreased; meanwhile,some relatively larger grains developed. The main texture types of the decarburized sheets were approximately the same: {001}<110> and {112~115}<110>,with a γ-fiber texture. Furthermore,little change was observed in the texture. Compared with the experimental sheets,the texture of the cold-rolled sheet was very scattered. The best average magnetic induction(B_(800)) among the final products was 1.946 T.
基金supported by Centre of Encellecne Mathentatics CHEThailand finanieally Sudaral Chadsuthi is supported by the Commission on Higher Education Thailand for its grant support under the Strategie Scholarships for Frintier Research Network for joint Ph.D.Programssupported by the National Science and Technology Development Agency (NSTDA) and Faculty of Science,Mahidol University
文摘Objective:To study the number of leptospirosis cases in relations to the seasonal pattern,and its association with climate factors.Methods:Time series analysis was used to study the time variations in the number of leptospirosis cases.The Autoregressive Integrated Moving Average (ARIMA) model was used in data curve fitting and predicting the next leptospirosis cases. Results:We found that the amount of rainfall was correlated to leptospirosis cases in both regions of interest,namely the northern and northeastern region of Thailand,while the temperature played a role in the northeastern region only.The use of multivariate ARIMA(ARIMAX) model showed that factoring in rainfall(with an 8 months lag) yields the best model for the northern region while the model,which factors in rainfall(with a 10 months kg) and temperature(with an 8 months lag) was the best for the northeaslern region.Conclusions:The models are able to show the trend in leptospirosis cases and closely fit the recorded data in both regions.The models can also be used to predict the next seasonal peak quite accurately.
基金Project supported by the Natural Science Foundation of Henan Province,China(Grant No.182300410279)the Key Science and Technology Research Project of Henan Province,China(Grant No.182102210311)+2 种基金the Key Scientific Research Project in Colleges and Universities of Henan Province,China(Grant No.18A430017)the Professional Practice Demonstration Base Program for Professional Degree Graduate in Material Engineering of Henan Polytechnic University,China(Grant No.2016YJD03)the Fund for the Innovative Research Team(in Science and Technology)in the University of Henan Province,China(Grant No.19IRTSTHN027)
文摘The inclusions in large diamond single crystals have effects on its ultimate performance, which restricts its industrial applications to a great extent. Therefore, it is necessary to study the inclusions systematically. In this paper, large diamond single crystals with different content values of inclusions are synthesized along the(100) surface by the temperature gradient method(TGM) under 5.6 GPa at different temperatures. With the synthetic temperature changing from 1200?C to 1270?C,the shapes of diamonds change from plate to low tower, to high tower, even to steeple. From the microscopic photographs of the diamond samples, it can be observed that with the shapes of the samples changing at different temperatures, the content values of inclusions in diamonds become zero, a little, much and most, correspondingly. Consequently, with the temperature growing from low to high, the content values of inclusions in crystals increase. The origin of inclusions is explained by the difference in growth rate between diamond crystal and its surface. The content values of inclusions in diamond samples are quantitatively calculated by testing the densities of diamond samples. And the composition and inclusion content are analyzed by energy dispersive spectroscopy(EDS) and x-ray diffraction(XRD). From contrasting scanning electron microscopy(SEM) photographs, it can be found that the more the inclusions in diamond, the more imperfect the diamond surface is.
基金supported by the Natural Science Foundation of Fujian Province (No. T08J0129)the Science and Technology Developing Foundation of Fuzhou University (No. 2008-XQ-001)2007-year New Century Talents Supporting Program of Fujian Province (No.XSJRC2007-17)
文摘We aim in this research at synthesizing high-purity aluminium titanate with sludge from the aluminium profile factory by shock cooling method, and mainly discuss the effect of calcining reaction temperature and holding time on crystalline, microstructure and content of aluminum titanate materials to determine the preferred calcining temperature and holding time. XRD and SEM methods were utilized to characterize the crystalline and microstructure of each specimen, Rietveld Quantification software was used for the determination of different crystalline contents of specimens, and Philips plus software was applied to determine the cell parameters of aluminium titanate in different specimens. According to the experimental results, preferred calcining temperature is determined as 1400℃ and preferred holding time is 2 h, at which the grains of aluminum titanate grow completely and the purity of aluminum titanate is 97.2wt%.
基金project supported by the Science and Technology Department of Zhejiang Province (2005C13003).
文摘Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation. Methods COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR. Results The removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor. Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃to 28℃.
基金Item Sponsored by National Natural Science Foundation of China (NSFC10402037) Theoretical Research Fund of SouthwestJiaotong University (2005XJB23)
文摘The uniaxial time-dependent strain cyclic behaviors and ratcheting of SS304 stainless steel were studied at high temperatures (350 ℃ and 700 ℃). The effects of straining and stressing rates, holding time at the peak and/or valley of each cycle in addition to ambient temperature on the cyclic softening/hardening behavior and ratcheting of the material were discussed. It can be seen from experimental results that the material presents remarkable time dependence at 700 ℃, and the ratcheting strain depends greatly on the stressing rate, holding time and ambient temperature. Some significant conclusions are obtained, which are useful to build a constitutive model describiog the time-dependent cyclic deformation of the material.
文摘Using radiosonde temperatures of 92 selected stations in China,the uncertainties in homogenization processes caused by different reference series,including nighttime temperature,the NCEP (National Centers for Environmental Prediction) and ERA-40 (European Centre for Medium-Range Weather Forecasts) forecasting background,are examined via a two-phase regression approach.Although the results showed limited consistency in the temporal and spatial distribution of identified break points (BPs) in the context of metadata events of instrument model change and correction method,significant uncertainties still existed in BP identification,adjustment,and impact on the estimated trend.Reanalysis reference series generally led to more BP identification in homogenization.However,those differences were parts of global climatic shifts,which may have confused the BP calculations.Discontinuities also existed in the reanalysis series due to changes in the satellite input.The adjustment values deduced from the reanalysis series ranged widely and were larger than those from the nighttime series and,therefore,impacted the estimated temperature trend.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51172089)the Program for New Century Excellent Talents in University of China
文摘A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is shown that the high temperature plays a key role in the incorporation of hydrogen atoms during diamond crystallization.Fourier transform infrared micro-spectroscopy reveals that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp 3-CH 2-symmetric(2850 cm-1) and sp 3 CH 2-antisymmetric vibrations(2920 cm-1).The intensities of these peaks increase gradually with an increase in the content of the hydrogen source in the catalyst.The incorporation of hydrogen impurity leads to a significant shift towards higher frequencies of the Raman peak from 1332.06 cm-1 to 1333.05 cm-1 and gives rise to some compressive stress in the diamond crystal lattice.Furthermore,hydrogen to carbon bonds are evident in the annealed diamond,indicating that the bonds that remain throughout the annealing process and the vibration frequencies centred at 2850 and 2920 cm-1 have no observable shift.Therefore,we suggest that the sp 3 C-H bond is rather stable in diamond crystals.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51071074, 51172089, and 51171070)the Program for New Century Excellent Talents in University of Ministry of Education of China
文摘We investigate the temperature field variation in the growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by using the temperature gradient method (TGM) at high pressure and high temperature (HPHT). We employ both the finite element method (FEM) and in situ experiments. Simulation results show that the temperature in the center area of the growth cell continues to decrease during the process of large diamond crystal growth. These results are in good agreement with our experimental data, which demonstrates that the finite element model can successfully predict the temperature field variations in the growth cell. The FEM simulation will be useful to grow larger high-quality diamond crystal by using the TGM. Furthermore, this method will be helpful in designing better cells and improving the growth process of gem-quality diamond crystal.