In order to obtain the sharp cube texture,a new process,the intermediate annealing rolling technique,has been introduced to prepare the Ni7W substrate.In this paper,a cubic texture content up to 98.5%within 10°of...In order to obtain the sharp cube texture,a new process,the intermediate annealing rolling technique,has been introduced to prepare the Ni7W substrate.In this paper,a cubic texture content up to 98.5%within 10°of the standard cubic orientation is obtained in the final substrate and the influence of this improved rolling technique on the cube texture formation has been discussed.The results show that the increased cube texture in the Ni7W substrate is caused by the optimized deformation texture and the increased nucleated fraction of the cube grains.展开更多
A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently...A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently,to recover massive superpolies,the nested monomial prediction technique,the algorithm based on the divide-and-conquer strategy,and stretching cube attacks were proposed,which have been used to recover a superpoly with over ten million monomials for the NFSR-based stream ciphers such as Trivium and Grain-128AEAD.Nevertheless,when these methods are used to recover superpolies,many invalid calculations are performed,which makes recovering superpolies more difficult.This study finds an interesting observation that can be used to improve the above methods.Based on the observation,a new method is proposed to avoid a part of invalid calculations during the process of recovering superpolies.Then,the new method is applied to the nested monomial prediction technique and an improved superpoly recovery framework is presented.To verify the effectiveness of the proposed scheme,the improved framework is applied to 844-and 846-round Trivium and the exact ANFs of the superpolies is obtained with over one hundred million monomials,showing the improved superpoly recovery technique is powerful.Besides,extensive experiments on other scaled-down variants of NFSR-based stream ciphers show that the proposed scheme indeed could be more efficient on the superpoly recovery against NFSR-based stream ciphers.展开更多
This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensi...This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.展开更多
在数据仓库系统中,数据立方体(Cube)及其预聚集处理在OLAP起到非常重要的作用.对于一个d维的data Cube可以生成2d个聚集Cuboids和multiply from i=1 to d(|Di|+1)个聚集数据单元,但对于一个高维Cube,要创建这些所有聚集Cuboids是不现实...在数据仓库系统中,数据立方体(Cube)及其预聚集处理在OLAP起到非常重要的作用.对于一个d维的data Cube可以生成2d个聚集Cuboids和multiply from i=1 to d(|Di|+1)个聚集数据单元,但对于一个高维Cube,要创建这些所有聚集Cuboids是不现实的.提出通过共享分段立方体Mini-Cube的高维Cube并行分布式存储结构(DHMC),将高维Cube划分成若干个低维共享分段立方体Mini-Cube,利用并行分布式处理技术来创建这些分割的分段共享Mini-Cube及其聚集Cuboids,来实现高维Cube的并行创建和增量更新维护,从而解决高维OLAP聚集海量数据的存储与查询问题.理论分析与实验结果均表明DHMC性能最佳.展开更多
阐述了一种基于表面生成的多波束数据处理方法——CUBE(Combined Uncertainty and Bathymetry Estimator)算法,用该方法可以对观测区域网格节点"真实"水深及相关误差进行估计。与从测量水深中选择出"最佳"数据的手...阐述了一种基于表面生成的多波束数据处理方法——CUBE(Combined Uncertainty and Bathymetry Estimator)算法,用该方法可以对观测区域网格节点"真实"水深及相关误差进行估计。与从测量水深中选择出"最佳"数据的手工交互方式的多波束数据编辑手段不同,CUBE算法具有很强的抗差性和较高的效率,适合于实时多波束数据处理。对南海某测区多波束数据处理结果表明,在没有人工干预的情况下,利用CUBE算法去噪生成的海底DTM图与手工编辑生成的相当吻合。CUBE算法和手工编辑方法综合对比得出,CUBE算法能够很好地保留水深地形细节,在计算效率、误差评估、实时处理等方面比手工编辑方法具有较大的优势。展开更多
基金Funded by the Beijing Municipal Natural Science Foundation(No.2212025)National Natural Science Foundation of China(No.12042506)+1 种基金Magnetic Resonance Union of Chinese Academy of Sciences(No.2020GZL001)the General Program of Science and Technology Development Project of Beijing Municipal Education Commission(No.KM202010005007)。
文摘In order to obtain the sharp cube texture,a new process,the intermediate annealing rolling technique,has been introduced to prepare the Ni7W substrate.In this paper,a cubic texture content up to 98.5%within 10°of the standard cubic orientation is obtained in the final substrate and the influence of this improved rolling technique on the cube texture formation has been discussed.The results show that the increased cube texture in the Ni7W substrate is caused by the optimized deformation texture and the increased nucleated fraction of the cube grains.
基金National Natural Science Foundation of China(62372464)。
文摘A critical problem in the cube attack is how to recover superpolies efficiently.As the targeting number of rounds of an iterative stream cipher increases,the scale of its superpolies becomes larger and larger.Recently,to recover massive superpolies,the nested monomial prediction technique,the algorithm based on the divide-and-conquer strategy,and stretching cube attacks were proposed,which have been used to recover a superpoly with over ten million monomials for the NFSR-based stream ciphers such as Trivium and Grain-128AEAD.Nevertheless,when these methods are used to recover superpolies,many invalid calculations are performed,which makes recovering superpolies more difficult.This study finds an interesting observation that can be used to improve the above methods.Based on the observation,a new method is proposed to avoid a part of invalid calculations during the process of recovering superpolies.Then,the new method is applied to the nested monomial prediction technique and an improved superpoly recovery framework is presented.To verify the effectiveness of the proposed scheme,the improved framework is applied to 844-and 846-round Trivium and the exact ANFs of the superpolies is obtained with over one hundred million monomials,showing the improved superpoly recovery technique is powerful.Besides,extensive experiments on other scaled-down variants of NFSR-based stream ciphers show that the proposed scheme indeed could be more efficient on the superpoly recovery against NFSR-based stream ciphers.
文摘This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.
文摘在数据仓库系统中,数据立方体(Cube)及其预聚集处理在OLAP起到非常重要的作用.对于一个d维的data Cube可以生成2d个聚集Cuboids和multiply from i=1 to d(|Di|+1)个聚集数据单元,但对于一个高维Cube,要创建这些所有聚集Cuboids是不现实的.提出通过共享分段立方体Mini-Cube的高维Cube并行分布式存储结构(DHMC),将高维Cube划分成若干个低维共享分段立方体Mini-Cube,利用并行分布式处理技术来创建这些分割的分段共享Mini-Cube及其聚集Cuboids,来实现高维Cube的并行创建和增量更新维护,从而解决高维OLAP聚集海量数据的存储与查询问题.理论分析与实验结果均表明DHMC性能最佳.
文摘阐述了一种基于表面生成的多波束数据处理方法——CUBE(Combined Uncertainty and Bathymetry Estimator)算法,用该方法可以对观测区域网格节点"真实"水深及相关误差进行估计。与从测量水深中选择出"最佳"数据的手工交互方式的多波束数据编辑手段不同,CUBE算法具有很强的抗差性和较高的效率,适合于实时多波束数据处理。对南海某测区多波束数据处理结果表明,在没有人工干预的情况下,利用CUBE算法去噪生成的海底DTM图与手工编辑生成的相当吻合。CUBE算法和手工编辑方法综合对比得出,CUBE算法能够很好地保留水深地形细节,在计算效率、误差评估、实时处理等方面比手工编辑方法具有较大的优势。