Hilbert problem 15 requires to understand Schubert's book. In this book, there is a theorem in §23, about the relation of the tangent lines from a point and the singular points of cubed curves with cusp near ...Hilbert problem 15 requires to understand Schubert's book. In this book, there is a theorem in §23, about the relation of the tangent lines from a point and the singular points of cubed curves with cusp near a 3-multiple straight line, which was obtained by the so called main trunk numbers, while for these numbers, Schubert said that he obtained them by experiences. So essentially Schubert even did not give any hint for the proof of this theorem. In this paper, by using the concept of generic point in the framework of Van der Waerden and Weil on algebraic geometry, and realizing Ritt-Wu method on computer, the authors prove that this theorem of Schubert is completely right.展开更多
文摘Hilbert problem 15 requires to understand Schubert's book. In this book, there is a theorem in §23, about the relation of the tangent lines from a point and the singular points of cubed curves with cusp near a 3-multiple straight line, which was obtained by the so called main trunk numbers, while for these numbers, Schubert said that he obtained them by experiences. So essentially Schubert even did not give any hint for the proof of this theorem. In this paper, by using the concept of generic point in the framework of Van der Waerden and Weil on algebraic geometry, and realizing Ritt-Wu method on computer, the authors prove that this theorem of Schubert is completely right.