In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that ...In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that is, constructing the curve (surface)fitting (interpolating) a given ordered point set without solving a linear system. We startwith a piece of initial non-uniform B-spline curve (surface) which takes the given point setas its control point set. Then by adjusting its control points gradually with iterative formula,we can get a group of non-uniform B-spline curves (surfaces) with gradually higherprecision. In this paper, using modern matrix theory, we strictly prove that the limit curve(surface) of the iteration interpolates the given point set. The non-uniform B-spline curves(surfaces) generated with the iteration have many advantages, such as satisfying theNURBS standard, having explicit expression, gaining locality, and convexity preserving,etc展开更多
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
Approximation methods are used in the analysis and prediction of data, especially laboratory data, in engineering projects. These methods are usually linear and are obtained by least-square-error approaches. There are...Approximation methods are used in the analysis and prediction of data, especially laboratory data, in engineering projects. These methods are usually linear and are obtained by least-square-error approaches. There are many problems in which linear models cannot be applied. Because of that there are logarithmic, exponential and polynomial curve-fitting models. These nonlinear models have a limited application in engineering problems. The variation of most data is such that the nonlinearity cannot be approximated by the above approaches. These methods are also not applicable when there is a large amount of data. For these reasons, a method of piecewise cubic spline approximation has been developed. The model presented here is capable of following the local nonuniformity of data in order to obtain a good fit of a curve to the data. There is C1 continuity at the limits of the piecewise elements. The model is tested and examined with four problems here. The results show that the model can approximate highly nonlinear data efficiently.展开更多
Using vectors between control points(a_i=P_(i+1)-P_i),parameters λ and μ(such that a_(i+1)=λ_(ai+μ_(a_i+2))are used to study the shape classification of planar parametric cubic B-spline curves. The regiosn of λμ...Using vectors between control points(a_i=P_(i+1)-P_i),parameters λ and μ(such that a_(i+1)=λ_(ai+μ_(a_i+2))are used to study the shape classification of planar parametric cubic B-spline curves. The regiosn of λμ space corresponding to different geometric features on the curves are investigated.These results are useful for curve design.展开更多
文摘In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that is, constructing the curve (surface)fitting (interpolating) a given ordered point set without solving a linear system. We startwith a piece of initial non-uniform B-spline curve (surface) which takes the given point setas its control point set. Then by adjusting its control points gradually with iterative formula,we can get a group of non-uniform B-spline curves (surfaces) with gradually higherprecision. In this paper, using modern matrix theory, we strictly prove that the limit curve(surface) of the iteration interpolates the given point set. The non-uniform B-spline curves(surfaces) generated with the iteration have many advantages, such as satisfying theNURBS standard, having explicit expression, gaining locality, and convexity preserving,etc
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
文摘Approximation methods are used in the analysis and prediction of data, especially laboratory data, in engineering projects. These methods are usually linear and are obtained by least-square-error approaches. There are many problems in which linear models cannot be applied. Because of that there are logarithmic, exponential and polynomial curve-fitting models. These nonlinear models have a limited application in engineering problems. The variation of most data is such that the nonlinearity cannot be approximated by the above approaches. These methods are also not applicable when there is a large amount of data. For these reasons, a method of piecewise cubic spline approximation has been developed. The model presented here is capable of following the local nonuniformity of data in order to obtain a good fit of a curve to the data. There is C1 continuity at the limits of the piecewise elements. The model is tested and examined with four problems here. The results show that the model can approximate highly nonlinear data efficiently.
文摘Using vectors between control points(a_i=P_(i+1)-P_i),parameters λ and μ(such that a_(i+1)=λ_(ai+μ_(a_i+2))are used to study the shape classification of planar parametric cubic B-spline curves. The regiosn of λμ space corresponding to different geometric features on the curves are investigated.These results are useful for curve design.