The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by as...The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by assuming that the interface behaves like a dislocation, which preserves the continuity of traction while allowing a finite amount of slip. Amplitude ratios of various reflected and transmitted waves have been depicted graphically. Some special cases of interest have been deduced from the present investigation.展开更多
A dislocation interaction model has been proposed for cyclic deformation of fcc crystals.Ac- cording to this model,cyclic stress-strain responses and saturation dislocation structures of a crystal are associated with ...A dislocation interaction model has been proposed for cyclic deformation of fcc crystals.Ac- cording to this model,cyclic stress-strain responses and saturation dislocation structures of a crystal are associated with the modes and intensities of dislocation interactions between slip systems active in the crystal; and,hence,may be predicted by the location of its tensile axis in the crystallographic triangle.This model has successfully explained the different behaviours of double-slip crystals and multi-slip behaviours of some crystals with orientations usually con- sidered as single-slip ones.展开更多
A problem concerned with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and therm...A problem concerned with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and thermal properties with two relaxation times has been investigated. The generalized thermoelastic theory with two relaxation times developed by Green and Lindsay has been used to study the problem. The expressions for the reflection and refraction coefficients which are the ratios of the amplitudes of reflected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness, transverse stiffness, thermal contact conductance, slip and welded boundaries. Amplitude ratios of different reflected and refracted waves for different boundaries with angle of emergence have been compared graphically for different incident waves. It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.展开更多
Acoustic wave propagation in piezoelectric crystals of classes 43m and 23 is studied. The crystals Tl3VS4 and Tl3TaSe4 (43m) of the Chalcogenide family and the crystal Bi12TiO20 (23) possess strong piezoelectric e...Acoustic wave propagation in piezoelectric crystals of classes 43m and 23 is studied. The crystals Tl3VS4 and Tl3TaSe4 (43m) of the Chalcogenide family and the crystal Bi12TiO20 (23) possess strong piezoelectric effect. Because the surface Bleustein-Gulyaev waves cannot exist in piezoelectric cubic crystals, it was concluded that new solutions for shear-horizontal surface acoustic waves (SH-SAWs) are found in the monocrystals using different electrical boundary conditions such as electrically "short" and "open" free-surfaces for the unique [ 101 ] direction of wave propagation. For the crystal Tl3TaSe4 with coefficient of electromechanical coupling (CEMC) Ke^2=e^2/(C×g)-1/3, the phase velocity Vph for the new SH-SAWs can be calculated with the following formula: Vph=(Vα+Vt)/2, where Vt is the speed of bulk SH-wave, Vt=Vt4(1+Ke^2)^1/2, Vα=αKVt4, αK=2[Ke(1+Ke^2)^1/2-Ke^2]^1/2, and Vt4=(C44/p)^1/2. It was found that the CEMC K2 evaluation for Tl3TaSe4 gave the value of K^2=2(Vf-Vm)/Vf-0.047 (-4.7%), where Vf-848 m/s and Vm-828 m/s are the new-SAW velocities for the free and metallized surfaces, respectively. This high value of KZ(Tl3TaSe4) is significantly greater than K2(Tl3VS4)-3% and about five times that of K2(Bi12YiO20).展开更多
Propagation characteristics of Rayleigh-type wave in a piezoelectric layered system are theoretically investigated.The piezoelectric layer is considered as a cubic crystal with finite thickness rotated about Y-axis an...Propagation characteristics of Rayleigh-type wave in a piezoelectric layered system are theoretically investigated.The piezoelectric layer is considered as a cubic crystal with finite thickness rotated about Y-axis and is imperfectly bonded onto a semi-infinite dielectric substrate.The imperfect interface between the two constituents is assumed to be mechanically compliant and dielectrically weakly conducting.The exact dispersion relations for electrically open or shorted boundary conditions are obtained.The numerical results show that the phase velocity of Rayleigh-type wave is symmetric with respect to the cut orientation of 45°and can achieve the maximum propagation speed in this orientation.The mechanical imperfection plays an important role in the dispersion relations,further the normal imperfection can produce a significant reduction of phase velocity comparing with the tangential imperfection.Comparing with the mechanical imperfection the electrical imperfection makes a relatively small reduction of phase velocity of Rayleigh-type wave.The obtained results can provide some fundamentals for understanding of piezoelectric semiconductor and for design and application of piezoelectric surface acoustic wave devices.展开更多
本文以Fe(NO3)3.9H2O,Zn(NO3)2.6H2O和N i(NO3)2.6H2O为原料,以柠檬酸为还原剂,采用燃烧法制备了ZnFe2O4和N i Fe2O4纳米粉体,采用X-射线粉末衍射仪(XRD)、高分辨率透射电子显微镜(TEM)、红外光谱(IR)和振动样品磁强计(VSM)等手段对样...本文以Fe(NO3)3.9H2O,Zn(NO3)2.6H2O和N i(NO3)2.6H2O为原料,以柠檬酸为还原剂,采用燃烧法制备了ZnFe2O4和N i Fe2O4纳米粉体,采用X-射线粉末衍射仪(XRD)、高分辨率透射电子显微镜(TEM)、红外光谱(IR)和振动样品磁强计(VSM)等手段对样品进行了表征,结果表明样品为尖晶石型铁酸锌纳米粉体和立方晶系的铁酸镍纳米粉体,其平均粒径约为22nm和32nm,并具有超顺磁性。展开更多
High quality Tb^3+/Eu^3+ co-doped cubic NaYF 4 single crystal in the size of Φ1.0 cm×6.6 cm was grown by a modified Bridgman method using KF as assistant flux for NaF-YF 3 system under the condition of complet...High quality Tb^3+/Eu^3+ co-doped cubic NaYF 4 single crystal in the size of Φ1.0 cm×6.6 cm was grown by a modified Bridgman method using KF as assistant flux for NaF-YF 3 system under the condition of completely closed Pt crucible.A white light emission from the combination of the violet-blue,blue,green,orange,and red lights with chromaticity coordinates of x = 0.3107,y = 0.3274,correlated color temperature of T c = 6637 K,color rendering index of R a = 83,and color quality scale of Q a = 82 could be obtained from 1.51 mol%Tb^3+ and 1.42 mol%Eu^3+ co-doped cubic NaYF 4 single crystal when being excited by a 369 nm light.This indicates that Tb^3+/Eu^3+)co-doped cubic NaYF 4 single crystal has a potential application in white light emitting diode excited by ultraviolet light.展开更多
The maximum work principle of Bishop-Hill was developed to analyze the axisymmetric co-deformation in face-centered cubic crystals (f.c.c.) for twinning on {111} 112 and slip on {111} 110 systems. The influence of ξ ...The maximum work principle of Bishop-Hill was developed to analyze the axisymmetric co-deformation in face-centered cubic crystals (f.c.c.) for twinning on {111} 112 and slip on {111} 110 systems. The influence of ξ , the ratio of critical re- solved shear stress for twinning to slip, on the yield stress states and corresponding active slip or/and twinning systems for orientations in the standard stereographic triangle of cubic crystal was investigated systematically. The Taylor factors and the anisotropy of yield strength for three important orientations [100], [110] and [111] in orientation space were analyzed. It is found that the yield strength asymmetry for the case of axisymmetric de- formation of tension and compression can be explained based on the microscopic theory of crystal plasticity. The concept of orientation factor for twinning ability was proposed and the deformation mechanism map in the orientation space was established for the case of axisymmetric deformation. The deformation texture formation and development of f.c.c. crystals with low stacking fault energy for axisymmetric tension can be explained qualita- tively on the basis of analyzed results.展开更多
文摘The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by assuming that the interface behaves like a dislocation, which preserves the continuity of traction while allowing a finite amount of slip. Amplitude ratios of various reflected and transmitted waves have been depicted graphically. Some special cases of interest have been deduced from the present investigation.
文摘A dislocation interaction model has been proposed for cyclic deformation of fcc crystals.Ac- cording to this model,cyclic stress-strain responses and saturation dislocation structures of a crystal are associated with the modes and intensities of dislocation interactions between slip systems active in the crystal; and,hence,may be predicted by the location of its tensile axis in the crystallographic triangle.This model has successfully explained the different behaviours of double-slip crystals and multi-slip behaviours of some crystals with orientations usually con- sidered as single-slip ones.
文摘A problem concerned with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and thermal properties with two relaxation times has been investigated. The generalized thermoelastic theory with two relaxation times developed by Green and Lindsay has been used to study the problem. The expressions for the reflection and refraction coefficients which are the ratios of the amplitudes of reflected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness, transverse stiffness, thermal contact conductance, slip and welded boundaries. Amplitude ratios of different reflected and refracted waves for different boundaries with angle of emergence have been compared graphically for different incident waves. It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.
文摘Acoustic wave propagation in piezoelectric crystals of classes 43m and 23 is studied. The crystals Tl3VS4 and Tl3TaSe4 (43m) of the Chalcogenide family and the crystal Bi12TiO20 (23) possess strong piezoelectric effect. Because the surface Bleustein-Gulyaev waves cannot exist in piezoelectric cubic crystals, it was concluded that new solutions for shear-horizontal surface acoustic waves (SH-SAWs) are found in the monocrystals using different electrical boundary conditions such as electrically "short" and "open" free-surfaces for the unique [ 101 ] direction of wave propagation. For the crystal Tl3TaSe4 with coefficient of electromechanical coupling (CEMC) Ke^2=e^2/(C×g)-1/3, the phase velocity Vph for the new SH-SAWs can be calculated with the following formula: Vph=(Vα+Vt)/2, where Vt is the speed of bulk SH-wave, Vt=Vt4(1+Ke^2)^1/2, Vα=αKVt4, αK=2[Ke(1+Ke^2)^1/2-Ke^2]^1/2, and Vt4=(C44/p)^1/2. It was found that the CEMC K2 evaluation for Tl3TaSe4 gave the value of K^2=2(Vf-Vm)/Vf-0.047 (-4.7%), where Vf-848 m/s and Vm-828 m/s are the new-SAW velocities for the free and metallized surfaces, respectively. This high value of KZ(Tl3TaSe4) is significantly greater than K2(Tl3VS4)-3% and about five times that of K2(Bi12YiO20).
基金This work is supported by the National Natural Science Foundation of China(Nos.11872041 and 11272221)Guoquan Nie also greatly acknowledges the Support Plan for One Hundred Outstanding Innovation Talents in Colleges and Universities of Hebei Province of China(SLRC2017052).
文摘Propagation characteristics of Rayleigh-type wave in a piezoelectric layered system are theoretically investigated.The piezoelectric layer is considered as a cubic crystal with finite thickness rotated about Y-axis and is imperfectly bonded onto a semi-infinite dielectric substrate.The imperfect interface between the two constituents is assumed to be mechanically compliant and dielectrically weakly conducting.The exact dispersion relations for electrically open or shorted boundary conditions are obtained.The numerical results show that the phase velocity of Rayleigh-type wave is symmetric with respect to the cut orientation of 45°and can achieve the maximum propagation speed in this orientation.The mechanical imperfection plays an important role in the dispersion relations,further the normal imperfection can produce a significant reduction of phase velocity comparing with the tangential imperfection.Comparing with the mechanical imperfection the electrical imperfection makes a relatively small reduction of phase velocity of Rayleigh-type wave.The obtained results can provide some fundamentals for understanding of piezoelectric semiconductor and for design and application of piezoelectric surface acoustic wave devices.
文摘本文以Fe(NO3)3.9H2O,Zn(NO3)2.6H2O和N i(NO3)2.6H2O为原料,以柠檬酸为还原剂,采用燃烧法制备了ZnFe2O4和N i Fe2O4纳米粉体,采用X-射线粉末衍射仪(XRD)、高分辨率透射电子显微镜(TEM)、红外光谱(IR)和振动样品磁强计(VSM)等手段对样品进行了表征,结果表明样品为尖晶石型铁酸锌纳米粉体和立方晶系的铁酸镍纳米粉体,其平均粒径约为22nm和32nm,并具有超顺磁性。
基金supported in part by the National Natural Science Foundation of China (Grant Nos.51472125 and 51272109)K.C.Wong Magna Fund in Ningbo University
文摘High quality Tb^3+/Eu^3+ co-doped cubic NaYF 4 single crystal in the size of Φ1.0 cm×6.6 cm was grown by a modified Bridgman method using KF as assistant flux for NaF-YF 3 system under the condition of completely closed Pt crucible.A white light emission from the combination of the violet-blue,blue,green,orange,and red lights with chromaticity coordinates of x = 0.3107,y = 0.3274,correlated color temperature of T c = 6637 K,color rendering index of R a = 83,and color quality scale of Q a = 82 could be obtained from 1.51 mol%Tb^3+ and 1.42 mol%Eu^3+ co-doped cubic NaYF 4 single crystal when being excited by a 369 nm light.This indicates that Tb^3+/Eu^3+)co-doped cubic NaYF 4 single crystal has a potential application in white light emitting diode excited by ultraviolet light.
基金supported by the National Natural Science Foundation of China(Grant Nos.50301016 and 59971067)the China Postdoctoral Science Foundation(Grant No.2005037003).
文摘The maximum work principle of Bishop-Hill was developed to analyze the axisymmetric co-deformation in face-centered cubic crystals (f.c.c.) for twinning on {111} 112 and slip on {111} 110 systems. The influence of ξ , the ratio of critical re- solved shear stress for twinning to slip, on the yield stress states and corresponding active slip or/and twinning systems for orientations in the standard stereographic triangle of cubic crystal was investigated systematically. The Taylor factors and the anisotropy of yield strength for three important orientations [100], [110] and [111] in orientation space were analyzed. It is found that the yield strength asymmetry for the case of axisymmetric de- formation of tension and compression can be explained based on the microscopic theory of crystal plasticity. The concept of orientation factor for twinning ability was proposed and the deformation mechanism map in the orientation space was established for the case of axisymmetric deformation. The deformation texture formation and development of f.c.c. crystals with low stacking fault energy for axisymmetric tension can be explained qualita- tively on the basis of analyzed results.