In this paper, the stability of a cubic functional equation in the setting of intuitionistic random normed spaces is proved. We first introduce the notation of intuitionistic random normed spaces. Then, by virtue of t...In this paper, the stability of a cubic functional equation in the setting of intuitionistic random normed spaces is proved. We first introduce the notation of intuitionistic random normed spaces. Then, by virtue of this notation, we study the stability of a cubic functional equation in the setting of these spaces under arbitrary triangle norms. Furthermore, we present the interdisciplinary relation among the theory of random spaces, the theory of intuitionistic spaces, and the theory of functional equations.展开更多
Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f ...Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y) is a cubic function for all x∈G, then there exists a cubic function C:G→E such that f?C is Lipschitz. Moreover, we investigate the stability of cubic functional equation 2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y)=0 on Lipschitz spaces.展开更多
In this paper, we determine the general solution of the functional equation f1 (2x + y) + f2(2x - y) = f3(x + y) + f4(x - y) + f5(x) without assuming any regularity condition on the unknown functions f1...In this paper, we determine the general solution of the functional equation f1 (2x + y) + f2(2x - y) = f3(x + y) + f4(x - y) + f5(x) without assuming any regularity condition on the unknown functions f1,f2,f3, f4, f5 : R→R. The general solution of this equation is obtained by finding the general solution of the functional equations f(2x + y) + f(2x - y) = g(x + y) + g(x - y) + h(x) and f(2x + y) - f(2x - y) = g(x + y) - g(x - y). The method used for solving these functional equations is elementary but exploits an important result due to Hosszfi. The solution of this functional equation can also be determined in certain type of groups using two important results due to Szekelyhidi.展开更多
In this paper, we will find out the general solution and investigate the generalized Hyers-Ulam-Rassias stability problem for the following cubic functional equation2f(x + 2y) + f(2x - y) = 5f(x + y) + 5f(x...In this paper, we will find out the general solution and investigate the generalized Hyers-Ulam-Rassias stability problem for the following cubic functional equation2f(x + 2y) + f(2x - y) = 5f(x + y) + 5f(x - y)+ 15f(y)in the spirit of Hyers, Ulam, Rassias and Gavruta.展开更多
In this paper, we investigate the general solution and the stability of a cubic functional equation f(x + ny) + f(x - ny) + f(nx) = n^2 f(x + y) + n^2 f(x - y)+ (n^3 - 2n^2 + 2)f(x),where n ≥ 2 i...In this paper, we investigate the general solution and the stability of a cubic functional equation f(x + ny) + f(x - ny) + f(nx) = n^2 f(x + y) + n^2 f(x - y)+ (n^3 - 2n^2 + 2)f(x),where n ≥ 2 is an integer. Furthermore, we prove the stability by the fixed point method.展开更多
According to the inverse solution of elasticity mechanics, a stress function is constructed which meets the space biharmonic equation, this stress functions is about cubic function pressure on the inner and outer surf...According to the inverse solution of elasticity mechanics, a stress function is constructed which meets the space biharmonic equation, this stress functions is about cubic function pressure on the inner and outer surfaces of cylinder. When borderline condition that is predigested according to the Saint-Venant's theory is joined, an equation suit is constructed which meets both the biharmonic equations and the boundary conditions. Furthermore, its analytic solution is deduced with Matlab. When this theory is applied to hydraulic bulging rollers, the experimental results inosculate with the theoretic calculation. Simultaneously, the limit along the axis invariable direction is given and the famous Lame solution can be induced from this limit. The above work paves the way for mathematic model building of hollow cylinder and for the analytic solution of hollow cvlinder with randomly uneven pressure.展开更多
基金supported by the Natural Science Foundation of Yibin University (No. 2009Z003)
文摘In this paper, the stability of a cubic functional equation in the setting of intuitionistic random normed spaces is proved. We first introduce the notation of intuitionistic random normed spaces. Then, by virtue of this notation, we study the stability of a cubic functional equation in the setting of these spaces under arbitrary triangle norms. Furthermore, we present the interdisciplinary relation among the theory of random spaces, the theory of intuitionistic spaces, and the theory of functional equations.
文摘Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y) is a cubic function for all x∈G, then there exists a cubic function C:G→E such that f?C is Lipschitz. Moreover, we investigate the stability of cubic functional equation 2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y)=0 on Lipschitz spaces.
文摘In this paper, we determine the general solution of the functional equation f1 (2x + y) + f2(2x - y) = f3(x + y) + f4(x - y) + f5(x) without assuming any regularity condition on the unknown functions f1,f2,f3, f4, f5 : R→R. The general solution of this equation is obtained by finding the general solution of the functional equations f(2x + y) + f(2x - y) = g(x + y) + g(x - y) + h(x) and f(2x + y) - f(2x - y) = g(x + y) - g(x - y). The method used for solving these functional equations is elementary but exploits an important result due to Hosszfi. The solution of this functional equation can also be determined in certain type of groups using two important results due to Szekelyhidi.
基金Korea Research Foundation Grant KRF-2007-313-C00033
文摘In this paper, we will find out the general solution and investigate the generalized Hyers-Ulam-Rassias stability problem for the following cubic functional equation2f(x + 2y) + f(2x - y) = 5f(x + y) + 5f(x - y)+ 15f(y)in the spirit of Hyers, Ulam, Rassias and Gavruta.
文摘In this paper, we investigate the general solution and the stability of a cubic functional equation f(x + ny) + f(x - ny) + f(nx) = n^2 f(x + y) + n^2 f(x - y)+ (n^3 - 2n^2 + 2)f(x),where n ≥ 2 is an integer. Furthermore, we prove the stability by the fixed point method.
文摘According to the inverse solution of elasticity mechanics, a stress function is constructed which meets the space biharmonic equation, this stress functions is about cubic function pressure on the inner and outer surfaces of cylinder. When borderline condition that is predigested according to the Saint-Venant's theory is joined, an equation suit is constructed which meets both the biharmonic equations and the boundary conditions. Furthermore, its analytic solution is deduced with Matlab. When this theory is applied to hydraulic bulging rollers, the experimental results inosculate with the theoretic calculation. Simultaneously, the limit along the axis invariable direction is given and the famous Lame solution can be induced from this limit. The above work paves the way for mathematic model building of hollow cylinder and for the analytic solution of hollow cvlinder with randomly uneven pressure.