The papcr gives an approach to construct shape preserving piece wise cubic, where twocubic picces are allowed by inscrting at most a new knot in each data subinterval, and these cubicpieees is C2 continuous at each ne...The papcr gives an approach to construct shape preserving piece wise cubic, where twocubic picces are allowed by inscrting at most a new knot in each data subinterval, and these cubicpieees is C2 continuous at each new knot. Two numerical examples show that the method is effec.tive and visually pleasing.展开更多
This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are...This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.展开更多
1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness ...1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness pairs.This method introduces free parameters that can be adjusted to customize elements according to accuracy and rank-sufficiency criteria.One-and two-dimensional Lagrangian cubic elements with only translational degrees of freedom(DOF)carry two additional nodes on each side,herein called side nodes or SN.Although usually placed at the third-points,the SN location may be adjusted within geometric limits.The adjustment effect is studied in detail using symbolic computations for a bar element.The best SN location is taken to be that producing accurate approximation to the lowest natural frequencies of the continuum model.Optimality is investigated through Fourier analysis of the propagation of plane waves over a regular infinite lattice of bar elements.Focus is placed on the acoustic branch of the frequency-vs.-wavenumber dispersion diagram.It is found that dispersion results using the fully integrated consistent mass matrix(CMM)are independent of the SN location whereas its lowfrequency accuracy order is O(κ8),whereκis the dimensionless wave number.For the diagonally lumped mass matrix(DLMM)constructed through the HRZ scheme,two optimal SN locations are identified,both away from third-points and of accuracy order O(κ8).That with the smallest error coefficient corresponds to the Lobatto 4-point integration rule.A special linear combination of CMM and DLMM with nodes at the Lobatto points yields an accuracy of O(κ10)without any increase in the computational effort over CMM.The effect of reduced integration(RI)on both mass and stiffness matrices is also studied.It is shown that singular mass matrices can be constructed with 2-and 3-point RI rules that display the same optimal accuracy of the exactly integrated case,at the cost of introducing spurious modes.The optimal SN location in two-dimensional,bicubic,isoparametric plane stress quadrilateral elements is briefly investigated by numerical experiments.The frequency accuracy of flexural modes is found to be fairly insensitive to that position,whereas for bar-like modes it agrees with the one-dimensional results.展开更多
Energy minimization has been widely used for constructing curve and surface in the fields such as computer-aided geometric design, computer graphics. However, our testing examples show that energy minimization does no...Energy minimization has been widely used for constructing curve and surface in the fields such as computer-aided geometric design, computer graphics. However, our testing examples show that energy minimization does not optimize the shape of the curve sometimes. This paper studies the relationship between minimizing strain energy and curve shapes, the study is carried out by constructing a cubic Hermite curve with satisfactory shape. The cubic Hermite curve interpolates the positions and tangent vectors of two given endpoints. Computer simulation technique has become one of the methods of scientific discovery, the study process is carried out by numerical computation and computer simulation technique. Our result shows that: (1) cubic Hermite curves cannot be constructed by solely minimizing the strain energy; (2) by adoption of a local minimum value of the strain energy, the shapes of cubic Hermite curves could be determined for about 60 percent of all cases, some of which have unsatisfactory shapes, however. Based on strain energy model and analysis, a new model is presented for constructing cubic Hermite curves with satisfactory shapes, which is a modification of strain energy model. The new model uses an explicit formula to compute the magnitudes of the two tangent vectors, and has the properties: (1) it is easy to compute; (2) it makes the cubic Hermite curves have satisfactory shapes while holding the good property of minimizing strain energy for some cases in curve construction. The comparison of the new model with the minimum strain energy model is included.展开更多
In this paper we apply a new method to choose suitable free parameters of the planar cubic G1 Hermite interpolant. The method provides the cubic G1 Hermite interpolant with minimal quadratic oscillation in average. We...In this paper we apply a new method to choose suitable free parameters of the planar cubic G1 Hermite interpolant. The method provides the cubic G1 Hermite interpolant with minimal quadratic oscillation in average. We can use the method to construct the optimal shape-preserving interpolant. Some numerical examples are presented to illustrate the effectiveness of the method.展开更多
文摘The papcr gives an approach to construct shape preserving piece wise cubic, where twocubic picces are allowed by inscrting at most a new knot in each data subinterval, and these cubicpieees is C2 continuous at each new knot. Two numerical examples show that the method is effec.tive and visually pleasing.
文摘This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.
基金This paper expands on work conducted during the 2005-2006 summer aca-demic recesses while the author was a visitor at CIMNE(Centro Internacional de Métodos Numéricos en Ingenieria)at Barcelona,SpainThe visits were partly supported by fellowships awarded by the Spanish Ministerio de Educación y Cultura during May-June of those years,and partly by the National Science Foundation under grant High-Fidelity Simulations for Heteroge-neous Civil and Mechanical Systems,CMS-0219422。
文摘1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness pairs.This method introduces free parameters that can be adjusted to customize elements according to accuracy and rank-sufficiency criteria.One-and two-dimensional Lagrangian cubic elements with only translational degrees of freedom(DOF)carry two additional nodes on each side,herein called side nodes or SN.Although usually placed at the third-points,the SN location may be adjusted within geometric limits.The adjustment effect is studied in detail using symbolic computations for a bar element.The best SN location is taken to be that producing accurate approximation to the lowest natural frequencies of the continuum model.Optimality is investigated through Fourier analysis of the propagation of plane waves over a regular infinite lattice of bar elements.Focus is placed on the acoustic branch of the frequency-vs.-wavenumber dispersion diagram.It is found that dispersion results using the fully integrated consistent mass matrix(CMM)are independent of the SN location whereas its lowfrequency accuracy order is O(κ8),whereκis the dimensionless wave number.For the diagonally lumped mass matrix(DLMM)constructed through the HRZ scheme,two optimal SN locations are identified,both away from third-points and of accuracy order O(κ8).That with the smallest error coefficient corresponds to the Lobatto 4-point integration rule.A special linear combination of CMM and DLMM with nodes at the Lobatto points yields an accuracy of O(κ10)without any increase in the computational effort over CMM.The effect of reduced integration(RI)on both mass and stiffness matrices is also studied.It is shown that singular mass matrices can be constructed with 2-and 3-point RI rules that display the same optimal accuracy of the exactly integrated case,at the cost of introducing spurious modes.The optimal SN location in two-dimensional,bicubic,isoparametric plane stress quadrilateral elements is briefly investigated by numerical experiments.The frequency accuracy of flexural modes is found to be fairly insensitive to that position,whereas for bar-like modes it agrees with the one-dimensional results.
基金Supported by the National Natural Science Foundation of China(61173174,61103150,61373078)the NSFC Joint Fund with Guangdong under Key Project(U1201258)the National Research Foundation for the Doctoral Program of Higher Education of China(20110131130004)
文摘Energy minimization has been widely used for constructing curve and surface in the fields such as computer-aided geometric design, computer graphics. However, our testing examples show that energy minimization does not optimize the shape of the curve sometimes. This paper studies the relationship between minimizing strain energy and curve shapes, the study is carried out by constructing a cubic Hermite curve with satisfactory shape. The cubic Hermite curve interpolates the positions and tangent vectors of two given endpoints. Computer simulation technique has become one of the methods of scientific discovery, the study process is carried out by numerical computation and computer simulation technique. Our result shows that: (1) cubic Hermite curves cannot be constructed by solely minimizing the strain energy; (2) by adoption of a local minimum value of the strain energy, the shapes of cubic Hermite curves could be determined for about 60 percent of all cases, some of which have unsatisfactory shapes, however. Based on strain energy model and analysis, a new model is presented for constructing cubic Hermite curves with satisfactory shapes, which is a modification of strain energy model. The new model uses an explicit formula to compute the magnitudes of the two tangent vectors, and has the properties: (1) it is easy to compute; (2) it makes the cubic Hermite curves have satisfactory shapes while holding the good property of minimizing strain energy for some cases in curve construction. The comparison of the new model with the minimum strain energy model is included.
基金The Scientific Research Fund (18A415) of Hunan Provincial Education Department
文摘In this paper we apply a new method to choose suitable free parameters of the planar cubic G1 Hermite interpolant. The method provides the cubic G1 Hermite interpolant with minimal quadratic oscillation in average. We can use the method to construct the optimal shape-preserving interpolant. Some numerical examples are presented to illustrate the effectiveness of the method.