In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-s...In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling.展开更多
Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (...Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.展开更多
This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finit...This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.展开更多
Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the c...Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve.展开更多
This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are...This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.展开更多
In this study, we use B-spline functions to solve the linear and nonlinear special systems of differential equations associated with the category of obstacle, unilateral, and contact problems. The problem can easily c...In this study, we use B-spline functions to solve the linear and nonlinear special systems of differential equations associated with the category of obstacle, unilateral, and contact problems. The problem can easily convert to an optimal control problem. Then a convergent approximate solution is constructed such that the exact boundary conditions are satisfied. The numerical examples and computational results illustrate and guarantee a higher accuracy for this technique.展开更多
High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric fini...High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construc-tion.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar.展开更多
Curve interpolation with B-spline is widely used in various areas. This problem is classic and recently raised in application scenario with new requirements such as path planning following the tangential vector field ...Curve interpolation with B-spline is widely used in various areas. This problem is classic and recently raised in application scenario with new requirements such as path planning following the tangential vector field under certified error in CNC machining. This paper proposes an algorithm framework to solve Hausdorff distance certified cubic B-spline interpolation problem with or without tangential direction constraints. The algorithm has two stages: The first stage is to find the initial cubic B-spine fitting curve which satisfies the Hausdorff distance constraint;the second stage is to set up and solve the optimization models with certain constraints. Especially, the sufficient conditions of the global Hausdorff distance control for any error bound are discussed, which can be expressed as a series of linear and quadratic constraints. A simple numerical algorithm to compute the Hausdorff distance between a polyline and its B-spline interpolation curve is proposed to reduce our computation.Experimental results are presented to show the advantages of the proposed algorithms.展开更多
文摘In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling.
基金financially supported by the National Natural Science Foundation of China(11202081,11272124,and 11472109)the State Key Lab of Subtropical Building Science,South China University of Technology(2014ZC17)
文摘Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.
文摘This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.
基金the financial support of the Important National Science and Technology Specific Projects of China (Grant No. 2011ZX05010-002)the Important Science and Technology Specific Projects of Petro China (Grant No. 2014E-3203)
文摘Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve.
文摘This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.
文摘In this study, we use B-spline functions to solve the linear and nonlinear special systems of differential equations associated with the category of obstacle, unilateral, and contact problems. The problem can easily convert to an optimal control problem. Then a convergent approximate solution is constructed such that the exact boundary conditions are satisfied. The numerical examples and computational results illustrate and guarantee a higher accuracy for this technique.
基金funded by the Zhejiang Province Science and Technology Plan Project under grant number 2023C01069the Hebei Provincial Program on Key Basic Research Project under grant number 23311808Dthe Wenzhou Major Science and Technology Innovation Project of China under grant number ZG2022004。
文摘High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construc-tion.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar.
基金partially supported by the National Key Research and Development Program of China under Grant No. 2020YFA0713703the National Science Foundation of China under Grant Nos. 11688101, 12371384+1 种基金12271516the Fundamental Research Funds for the Central Universities。
文摘Curve interpolation with B-spline is widely used in various areas. This problem is classic and recently raised in application scenario with new requirements such as path planning following the tangential vector field under certified error in CNC machining. This paper proposes an algorithm framework to solve Hausdorff distance certified cubic B-spline interpolation problem with or without tangential direction constraints. The algorithm has two stages: The first stage is to find the initial cubic B-spine fitting curve which satisfies the Hausdorff distance constraint;the second stage is to set up and solve the optimization models with certain constraints. Especially, the sufficient conditions of the global Hausdorff distance control for any error bound are discussed, which can be expressed as a series of linear and quadratic constraints. A simple numerical algorithm to compute the Hausdorff distance between a polyline and its B-spline interpolation curve is proposed to reduce our computation.Experimental results are presented to show the advantages of the proposed algorithms.