期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Swarm Optimization and Machine Learning for Android Malware Detection 被引量:1
1
作者 K.Santosh Jhansi P.Ravi Kiran Varma Sujata Chakravarty 《Computers, Materials & Continua》 SCIE EI 2022年第12期6327-6345,共19页
Malware Security Intelligence constitutes the analysis of applications and their associated metadata for possible security threats.Application Programming Interfaces(API)calls contain valuable information that can hel... Malware Security Intelligence constitutes the analysis of applications and their associated metadata for possible security threats.Application Programming Interfaces(API)calls contain valuable information that can help with malware identification.The malware analysis with reduced feature space helps for the efficient identification of malware.The goal of this research is to find the most informative features of API calls to improve the android malware detection accuracy.Three swarm optimization methods,viz.,Ant Lion Optimization(ALO),Cuckoo Search Optimization(CSO),and Firefly Optimization(FO)are applied to API calls using auto-encoders for identification of most influential features.The nature-inspired wrapperbased algorithms are evaluated using well-known Machine Learning(ML)classifiers such as Linear Regression(LR),Decision Tree(DT),Random Forest(RF),K-Nearest Neighbor(KNN)&SupportVector Machine(SVM).A hybrid Artificial Neuronal Classifier(ANC)is proposed for improving the classification of android malware.The experimental results yielded an accuracy of 98.87%with just seven features out of hundred API call features,i.e.,a massive 93%of data optimization. 展开更多
关键词 Android malware API calls auto-encoders ant lion optimization cuckoo search optimization firefly optimization artificial neural networks artificial neuronal classifier
下载PDF
Word Sense Disambiguation Based Sentiment Classification Using Linear Kernel Learning Scheme
2
作者 P.Ramya B.Karthik 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2379-2391,共13页
Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the... Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the features of the context such as neighboring words like adjective provide the evidence for classification using machine learning approach.This paper presented the text document classification that has wide applications in information retrieval,which uses movie review datasets.Here the document indexing based on controlled vocabulary,adjective,word sense disambiguation,generating hierarchical cate-gorization of web pages,spam detection,topic labeling,web search,document summarization,etc.Here the kernel support vector machine learning algorithm helps to classify the text and feature extract is performed by cuckoo search opti-mization.Positive review and negative review of movie dataset is presented to get the better classification accuracy.Experimental results focused with context mining,feature analysis and classification.By comparing with the previous work,proposed work designed to achieve the efficient results.Overall design is per-formed with MATLAB 2020a tool. 展开更多
关键词 Text classification word sense disambiguation kernel support vector machine learning algorithm cuckoo search optimization feature extraction
下载PDF
Application of CS-PSO algorithm in Bayesian network structure learning 被引量:3
3
作者 LI Jun-wu LI Guo-ning ZHANG Ding 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期94-102,共9页
In view of the shortcomings of traditional Bayesian network(BN)structure learning algorithm,such as low efficiency,premature algorithm and poor learning effect,the intelligent algorithm of cuckoo search(CS)and particl... In view of the shortcomings of traditional Bayesian network(BN)structure learning algorithm,such as low efficiency,premature algorithm and poor learning effect,the intelligent algorithm of cuckoo search(CS)and particle swarm optimization(PSO)is selected.Combined with the characteristics of BN structure,a BN structure learning algorithm of CS-PSO is proposed.Firstly,the CS algorithm is improved from the following three aspects:the maximum spanning tree is used to guide the initialization direction of the CS algorithm,the fitness of the solution is used to adjust the optimization and abandoning process of the solution,and PSO algorithm is used to update the position of the CS algorithm.Secondly,according to the structure characteristics of BN,the CS-PSO algorithm is applied to the structure learning of BN.Finally,chest clinic,credit and car diagnosis classic network are utilized as the simulation model,and the modeling and simulation comparison of greedy algorithm,K2 algorithm,CS algorithm and CS-PSO algorithm are carried out.The results show that the CS-PSO algorithm has fast convergence speed,high convergence accuracy and good stability in the structure learning of BN,and it can get the accurate BN structure model faster and better. 展开更多
关键词 Bayesian network structure learning cuckoo search and particle swarm optimization(CS-PSO)
下载PDF
A novel stacking-based ensemble learning model for drilling efficiency prediction in earth-rock excavation 被引量:1
4
作者 Fei LV Jia YU +3 位作者 Jun ZHANG Peng YU Da-wei TONG Bin-ping WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第12期1027-1046,共20页
Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule.The single machine learning(ML)prediction models usually suffer from problems including parameter sensitivity an... Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule.The single machine learning(ML)prediction models usually suffer from problems including parameter sensitivity and overfitting.In addition,the influence of environmental and operational factors is often ignored.In response,a novel stacking-based ensemble learning method taking into account the combined effects of those factors is proposed.Through multiple comparison tests,four models,e Xtreme gradient boosting(XGBoost),random forest(RF),back propagation neural network(BPNN)as the base learners,and support vector regression(SVR)as the meta-learner,are selected for stacking.Furthermore,an improved cuckoo search optimization(ICSO)algorithm is developed for hyper-parameter optimization of the ensemble model.The application to a real-world project demonstrates that the proposed method outperforms the popular single ML method XGBoost and the ensemble model optimized by particle swarm optimization(PSO),with 16.43%and 4.88%improvements of mean absolute percentage error(MAPE),respectively. 展开更多
关键词 Drilling efficiency PREDICTION Earth-rock excavation Stacking-based ensemble learning Improved cuckoo search optimization(ICSO)algorithm Comprehensive effects of various factors Hyper-parameter optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部