High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. How...High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. However, the bHLH TFs responsible for high-temperature tolerance in cucumbers have not been identified. We used transcriptome profiling to screen the high temperature-responsive candidate bHLH TFs in cucumber. Here, we found that the expression of 75 CsbHLH genes was altered under high-temperature stress. The expression of the CsSPT gene was induced by high temperatures in TT(Thermotolerant) cucumber plants. However, the Csspt mutant plants obtained by the CRISPR-Cas9 system showed severe thermosensitive symptoms, including wilted leaves with brown margins and reduced root density and cell activity.The Csspt mutant plants also exhibited elevated H_(2)O_(2) levels and down-regulated photosystem-related genes under normal conditions.Furthermore, there were high relative electrolytic leakage(REC), malondialdehyde(MDA), glutathione(GSH), and superoxide radical(O_(2)^(·-)) levels in the Csspt mutant plants, with decreased Proline content after the high-temperature treatment. Transcriptome analysis showed that the photosystem and chloroplast activities in Csspt mutant plants were extremely disrupted by the high-temperature stress compared with wildtype(WT) plants. Moreover, the plant hormone signal transduction, as well as MAPK and calcium signaling pathways were activated in Csspt mutant plants under high-temperature stress. The HSF and HSP family genes shared the same upregulated expression patterns in Csspt and WT plants under high-temperature conditions. However, most bHLH, NAC, and bZIP family genes were significantly down-regulated by heat in Csspt mutant plants. Thus, these results demonstrated that CsSPT regulated the high-temperature response by recruiting photosynthesis components, signaling pathway molecules, and transcription factors. Our results provide important insights into the heat response mechanism of CsSPT in cucumber and its potential as a target for breeding heat-resistant crops.展开更多
The photosynthetic rate (Pn) and carboxylation efficiency (CE) were observed to be the highest in mid-position leaves of cucumber in solar-greenhouse, second in upper and middle-lower position leaves, and lowest in lo...The photosynthetic rate (Pn) and carboxylation efficiency (CE) were observed to be the highest in mid-position leaves of cucumber in solar-greenhouse, second in upper and middle-lower position leaves, and lowest in lower-position leaves. The saturation light of the mid-position leaves was also the highest, while the photo compensation points of the upper, middle and lower position leaves decreased as the leaf-position descended. During the growth period, the Pn of most leaves enhanced as PFD increased. Pn curves of diurnal variation in different position leaves had single-peak which appeared at 12: 00 a. m. As the plant density increased, the PFD of different layer leaves decreased, especially of the lower position leaves. The effect of plant density on the Pn of the upper-position leaves was not visible, but on the light compensation points was obvious. As to lower position leaves, the Pn and saturation light decreased as the plant density increased, but the light compensation points were not obviously affected. Cucumber leaves had certain capacity of adaptation and adjustment to light intensity which expressed as the lower the PFD, the higher the apparent quantum yield (AQY). So the AQY increased as the leaf position descended and plant density increased.展开更多
Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosyntheti...Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosynthetic rate (Pn), stomatal conductance, as well as the maximum yield of the photosystem II photochemical reactions (Fv/Fm) and the quantum yield of photosysytem II electron transport (Φ PSII), application of Si reversed the negative effects of excess Mn. In the further investigation, it was obtained that application of Si significantly increased the activities of enzymes related with ascorbate-glutathione cycle including ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in cucumber chloroplast under excess Mn, this could be responsible for the lower accumulation of H2O2 and lower lipid peroxidation of chloroplast induced by Mn, and resulted in keeping higher photosynthesis.展开更多
Light-emitting diodes(LEDs)have been widely applied in the controlled environment agriculture,which are characterized by relatively narrow-band spectra and energetical efficiency.Most recently,the spectrum of Sunlike ...Light-emitting diodes(LEDs)have been widely applied in the controlled environment agriculture,which are characterized by relatively narrow-band spectra and energetical efficiency.Most recently,the spectrum of Sunlike LEDs has been engineered and it closely resembles solar spectrum in the range of photosynthetic active radiation(PAR,400–700 nm).To investigate how plant growth responses to the spectrum of Sunlike LEDs,cucumber and lettuce plants were cultivated and their responses were compared with the conventional white LEDs as well as composite of red and blue LEDs(RB,R/B ratio was 9:1).We observed that although Sunlike LEDs resulted in a longer stem in cucumber,dry weight and leaf area were similar as those under RB LEDs,and significantly higher than those under white LEDs.Moreover,cucumber leaves grown under Sunlike and white LEDs showed higher photosynthetic capacity than those grown under RB LEDs.For lettuce,plants grown under Sunlike LEDs showed larger leaf area and higher dry weight than the other two treatments.However,the leaf photosynthetic capacity of lettuce grown under Sunlike LEDs was the lowest.In this context,the spectrum induced plant functions are species-dependent.Furthermore,the three types of LEDs show distinct light spectra and they are different in many aspects.Therefore,it is difficult to attribute the different plant responses to certain specific light spectra.We conclude that plants grown under Sunlike LEDs exhibit larger leaf area,which may be due to some specific spectrum distributions(such as more far-red radiation),and consequently are favorable for light interception and therefore result in greater production.展开更多
The increase of atmospheric CO 2 concentration is indisputable. In such condition, photosynthetic response of leaf is relatively well studied, while the comparison of that between single leaf and whole canopy is less...The increase of atmospheric CO 2 concentration is indisputable. In such condition, photosynthetic response of leaf is relatively well studied, while the comparison of that between single leaf and whole canopy is less emphasized. The stimulation of elevated CO 2 on canopy photosynthesis may be different from that on single leaf level. In this study, leaf and canopy photosynthesis of rice (Oryza sativa L.) were studied throughout the growing season. High CO 2 and temperature had a synergetic stimulation on single leaf photosynthetic rate until grain filling. Photosynthesis of leaf was stimulated by high CO 2, although the stimulation was decreased by higher temperature at grain filling stage. On the other hand, the simulation of elevated CO 2 on canopy photosynthesis leveled off with time. Stimulation at canopy level disappeared by grain filling stage in both temperature treatments. Green leaf area index was not significantly affected by CO 2 at maturity, but greater in plants grown at higher temperature. Leaf nitrogen content decreased with the increase of CO 2 concentration although it was not statistically significant at maturity. Canopy respiration rate increased at flowering stage indicating higher carbon loss. Shading effect caused by leaf development reached maximum at flowering stage. The CO 2 stimulation on photosynthesis was greater in single leaf than in canopy. Since enhanced CO 2 significantly increased biomass of rice stems and panicles, increase in canopy respiration caused diminishment of CO 2 stimulation in canopy net photosynthesis. Leaf nitrogen in the canopy level decreased with CO 2 concentration and may eventually hasten CO 2 stimulation on canopy photosynthesis. Early senescence of canopy leaves in high CO 2 is also a possible cause.展开更多
One of the most important objectives for breeders is to develop high-yield cultivars.The increase in crop yield has met with bottlenecks after the first green revolution,and more recent efforts have been focusing on a...One of the most important objectives for breeders is to develop high-yield cultivars.The increase in crop yield has met with bottlenecks after the first green revolution,and more recent efforts have been focusing on achieving high photosynthetic efficiency traits in order to enhance the yield.Leaf shape is a significant agronomic trait of upland cotton that affects plant and canopy architecture,yield,and other production attributes.The major leaf shape types,including normal,sub-okra,okra,and super-okra,with varying levels of lobe severity,are controlled by a multiple allelic series of the D-genome locus L-D_(1).To analyze the effects of L-D_(1)alleles on leaf morphology,photosynthetic related traits and yield of cotton,two sets of near isogenic lines(NILs)with different alleles were constructed in Lumianyan 22(LMY22)and Lumianyan 28(LMY28)backgrounds.The analysis of morphological parameters and the results of virus-induced gene silencing(VIGS)showed that the regulation of leaf shape by L-D_(1)alleles was similar to a gene-dosage effect.Compared with the normal leaf,deeper lobes of the sub-okra leaf improved plant canopy structure by decreasing the leaf area index(LAI)and increasing the light transmittance rate(LTR),and the mid-range LAI of sub-okra leaf also guaranteed the accumulation of cotton biomass.Although the chlorophyll content(SPAD)of sub-okra leaf was lower than those of the other two leaf shapes,the net photosynthetic rate(Pn)of sub-okra leaf was higher than those of okra leaf and normal leaf at most stages.Thus,the improvements in canopy structure,as well as photosynthetic and physiological characteristics,contributed to optimizing the light environment,thereby increasing the total biomass and yield in the lines with a sub-okra leaf shape.Our results suggest that the sub-okra leaf may have practical application in cultivating varieties,and could enhance sustainable and profitable cotton production.展开更多
The canopy net photosynthesis rate of Mongolian oak (Quercus mongolica) tree species that are dominant in East Asia and Korea is estimated with empirical models derived from field experimental data obtained from the N...The canopy net photosynthesis rate of Mongolian oak (Quercus mongolica) tree species that are dominant in East Asia and Korea is estimated with empirical models derived from field experimental data obtained from the Nam-San site in Seoul, Korea for the growing period from early May to late October in 2010. The empirical models include the attenuation function of photosynthetic photon flux density (PPFD) (r2 = 0.98-0.99, p r2 = 0.99, p < 0.001) derived from the measured data at several levels within the canopy. The incident PPFD at each level within canopy significantly varies diurnally and seasonally due to the seasonal variation of the total plant area index (TPAI = leaf area index + wood silhouette area index) and the light shielding effect of light path-length through the canopy in association with the variation of solar elevation angle. Consequently, a remarkable seasonal variation of the total canopy net photosynthesis rate of Q. mongolica forest stand is found for its growing period. The PPFD exceeding 1000 μmol m-2·s-1 is found to cause the decrease of net photosynthesis rate due to the thermal stress in the early (May) and late (September) growing period. During the whole growing season, the estimated total canopy net photosynthesis rate is found to be about 3.3 kg CO2 m-2.展开更多
In this study,machine vision technology was used to capture images of greenhouse cucumber canopy,and image segmentation was implemented under various natural lighting conditions.The images were enhanced by multi-scale...In this study,machine vision technology was used to capture images of greenhouse cucumber canopy,and image segmentation was implemented under various natural lighting conditions.The images were enhanced by multi-scale retinex with color restore(MSRCR),and the MSRCR images were segmented by four algorithms:normalized difference index(NDI),excess green(ExG),modified excess green(MExG),and modified excess green minus excess red(MExG-ExR).The results indicated that compared with the original images,under various lighting conditions,the average evaluation indexes of brightness,information entropy,average gradient and mean gray value of the MSRCR images were increased by 38.71%,8.04%,4.54%,and 37.81%,respectively,and only the contrast degree decreased by 12.13%.The MExG-ExR segmentation algorithm was used to segment the MSRCR images(fifty images under various lighting conditions in the test and it performed best among the four segmentation algorithms,average overlap ratios and recognition rates of were 99.28%and 98.91%,respectively,while 38.39%and 37.95%respectively for original image.These results indicated that the MExG-ExR segmentation algorithm applied to a MSRCR canopy image produced the most stable results among the four algorithms.By using the MSRCR image enhancement algorithm,the interference of lighting on greenhouse cucumber canopy images was reduced and the foundation for achieving accurate segmentation of a canopy region was laid,which is of great significance for greenhouse cucumber phenotypic parameter measurements.展开更多
High-quality cucumber seedlings are a prerequisite for ensuring high yield of cucumbers.With the continuous increase of cucumber planting area in China,the demand for high-quality cucumber seedlings is also increasing...High-quality cucumber seedlings are a prerequisite for ensuring high yield of cucumbers.With the continuous increase of cucumber planting area in China,the demand for high-quality cucumber seedlings is also increasing.One of the important ways to improve the quality of cucumber seedlings is to improve the light environment by using artificial light source.In this study,three cucumber seedlings(cv.Jintong,cv.Yunv and cv.Xiazhiguang)were grown for 23 d under eight levels of daily light integral(DLI)at 4.3 mol/(m^(2)·d),8.6 mol/(m^(2)·d),10.1 mol/(m^(2)·d),13.0 mol/(m^(2)·d),5.8 mol/(m^(2)·d),11.5 mol/(m^(2)·d),14.4 mol/(m^(2)·d)and 17.3 mol/(m^(2)·d),respectively.The results showed that when DLI was 14.4 mol/(m^(2)·d),the seedling height,stem diameter,total leaf area and shoot dry/fresh weight of all three cucumber cultivars reached the maximum,while hypocotyl length decreased with the increase of light intensity.When DLI was 14.4 mol/(m^(2)·d),Jintong and Xiazhiguang had the highest health index,which were 49.29 and 28.56,respectively,while that of Yunv was 81.59(DLI=14.4 mol/(m^(2)·d)).With the increase of DLI,the photosynthetic capacity of cucumber increases gradually.The highest net photosynthetic rate was shown at DLI of 14.4 mol/(m^(2)·d),while the chlorophyll content of cucumber seedlings of all three cultivars were less affected by DLI.Jintong and Yunv had the highest chlorophyll content when DLI was 8.6 mol/(m^(2)·d)because they were adapted to low-light environment.In conclusion,the DLI of 14.4 mol/(m^(2)·d)for Jintong and Xiazhiguang,while that of 17.3 mol/(m^(2)·d)for Yunv are suggested for the light environment design of factory-cultivated seedling for cucumber.展开更多
Although open-central canopy(OCC)is popular in apple(Malus×domestica)orchards in Loess Plateau of China,its relevant photosynthetic mechanisms have not been elucidated.In this study,changes in photosynthetically ...Although open-central canopy(OCC)is popular in apple(Malus×domestica)orchards in Loess Plateau of China,its relevant photosynthetic mechanisms have not been elucidated.In this study,changes in photosynthetically active radiation(PAR),gas exchange,chlorophyll fluorescence quenching and fruit quality in apple trees were measured in OCC and compared with those in the conventional condensed round and large canopy(RLC).Results showed that light intercepted at different orientations was 44%higher by OCC than that by RLC.The improved light environment within OCC remarkably increased leaf maximum net photosynthetic rate(Pnmax)and significantly decreased stomatal limitation.Under high light,the ratio of photorespiratory rate to gross photosynthetic rate(Pr/Pg)in OCC was higher than that in RLC.Moreover,reversible component in non-photochemical quenching(r(qE))was increased,while irreversible component(r(qI))was decreased in OCC than in RLC.As a result,the fruit quality in OCC was greatly boosted as evidenced by the significantly increased single fruit weight,fruit flesh firmness and fruit soluble solid contents and the sharply decreased fruit titratable acid contents.PAR intercepted by the canopy and the fruit soluble solid contents,leaf Pnmaxor single fruit weight were positively correlated,while PAR or Pnmaxwas negatively correlated with the fruit titratable acid contents.Accordingly,the improved crown light environment and the enhanced leaf photosynthetic performance and photoprotective capacity in OCC led to the boosted fruit quality.展开更多
The paper reviews the factors and mechanisms involved in the regulation of seed growth,discusses the roles of source sink relationship in yield formation and effects of climate change and canopy photosynthesis on gro...The paper reviews the factors and mechanisms involved in the regulation of seed growth,discusses the roles of source sink relationship in yield formation and effects of climate change and canopy photosynthesis on groth and yield in soybean.展开更多
Marginal water-use efficiency plays a critical role in plant carbon–water coupling relationships.We investigated the ecosystem marginal water-use efficiency(k)of a tropical seasonal evergreen forest to(1)determine th...Marginal water-use efficiency plays a critical role in plant carbon–water coupling relationships.We investigated the ecosystem marginal water-use efficiency(k)of a tropical seasonal evergreen forest to(1)determine the general pattern of k across time,(2)compare different models for calculating k,and(3)address how k varies with soil water content during different seasons.There was a U-shaped diurnal pattern in k,which was higher in the early morning and late afternoon.At other times of the day,k was lower and remained constant.Ecosystem k was higher in the wet season than in the dry season.All three models successfully captured the diurnal and seasonal patterns of k but differed in the calculated absolute values.The idea that k is constant on a subdaily scale was partly supported by our study,while a constant k was only true when data from the early morning and late afternoon were not included.Theλincreases with soil water content on a seasonal scale,possibly because early morningλremained low in dry conditions when the soil water content was low.展开更多
A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irri...A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irrigation (W0), irrigation once at jointing (W1j) or at booting (W1b), irrigation twice at jointing and booting (W2), and irrigation three times at jointing, booting and grain-filling (W3) and three planting densities, such as 180 (D1), 300 (D2) and 450 (D3) seedlings per square meter. The results indicated that irrigation significantly improved population photosynthesis. The relationship between population photosynthesis and irrigation time/volume was to some extent parabolic. Improvements in population photosynthesis (resulting from more irrigation time/volume) were mainly related to increase in leaf area index and population light interception. Population photosynthesis exhibited a significantly negative correlation with canopy light transmittance. Population photosynthesis at grain filling stage was significantly positively correlated with dry matter accumulation at post-anthesis and grain yield. Main effects and partial correlation analysis showed that population photosynthesis of W0, W1j, W1b and W3 were regulated by canopy light transmittance and leaf area. On the other hand, population photosynthesis of W2 was mainly influenced by flag leaf photosynthetic rate. On this basis, planting 300 seedlings per square meter was the optimum combination. The combination of W2D2 increased population photosynthesis during mid-late growth stages and extended high population photosynthesis duration, which ultimately increased grain yield.展开更多
We plan to estimate global net primary production (NPP) of vegetation using the Advanced Earth Observing Satellite\|Ⅱ (ADEOS\|Ⅱ) Global Imager (GLI) multi\|spectral data. We derive an NPP estimation algorithm from g...We plan to estimate global net primary production (NPP) of vegetation using the Advanced Earth Observing Satellite\|Ⅱ (ADEOS\|Ⅱ) Global Imager (GLI) multi\|spectral data. We derive an NPP estimation algorithm from ground measurement data on temperate plants in Japan. By the algorithm, we estimate NPP using a vegetation index based on pattern decomposition (VIPD) for the Mongolian Plateau. The VIPD is derived from Landsat ETM+ multi\|spectral data, and the resulting NPP estimation is compared with ground data measured in a semi\|arid area of Mongolia. The NPP estimation derived from satellite remote sensing data agrees with the ground measurement data within the error range of 15% when all above\|ground vegetation NPP is calculated for different vegetation classifications.展开更多
This study was conducted to investigate the effect of scarification on bambara groundnut(Vigna subterranea)physiological growth and development and crop phenology.Bambara groundnut landrace seeds used in this study we...This study was conducted to investigate the effect of scarification on bambara groundnut(Vigna subterranea)physiological growth and development and crop phenology.Bambara groundnut landrace seeds used in this study were characterized by seed coat colour(cream,light brown and brown).Seed scarification treatments were mechanical(sand paper)and chemical(sulphuric acid)scarification,while seeds that were not scarified served as a control.A completely randomized design with three replications was used.The parameters that were assessed were time to emergence,final emergence percentage,leaf number,chlorophyll content index(CCI),canopy diameter,plant height,chlorophyll fluorescence(Fv/Fm),photosynthetic performance index(Pi),time to flowering and time to senescence.CCI,leaf number and plant height were significantly(p<0.05)influenced by seed coat colour,seed scarification treatments and their interaction thereof.Seed scarification treatment had a significant effect on CCI,leaf number and plant height.Generally,seed scarification improved plant overall performance than the control.Chemical scarification presented superior performance of bambara groundnut growth and development.Light brown seeds produced plants with superior overall performance,having superior emergence,CCI,leaf number,and early flowering and senescence.Light brown seeds were followed by cream seeds in terms of superiority of plant performance,having produced plants with superior canopy diameter,plant height and Pi.Therefore,bambara groundnut farmers and researchers can successfully use scarification to improve its physiological growth and attain earlier phenological stages,hence maturity.At the same time,light brown seeds should be selected for cultivation to give the best plant performance.展开更多
基金supported by grants from the Key Project of Guangzhou (Grant No.202103000085)National Natural Science Foundation of China (Grant No.31902014)+1 种基金Guangzhou Science and Technology Project (Grant No.202102020502)Fruit and Vegetable Industry System Innovation Team Project of Guangdong (Grant No.2021KJ110)。
文摘High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. However, the bHLH TFs responsible for high-temperature tolerance in cucumbers have not been identified. We used transcriptome profiling to screen the high temperature-responsive candidate bHLH TFs in cucumber. Here, we found that the expression of 75 CsbHLH genes was altered under high-temperature stress. The expression of the CsSPT gene was induced by high temperatures in TT(Thermotolerant) cucumber plants. However, the Csspt mutant plants obtained by the CRISPR-Cas9 system showed severe thermosensitive symptoms, including wilted leaves with brown margins and reduced root density and cell activity.The Csspt mutant plants also exhibited elevated H_(2)O_(2) levels and down-regulated photosystem-related genes under normal conditions.Furthermore, there were high relative electrolytic leakage(REC), malondialdehyde(MDA), glutathione(GSH), and superoxide radical(O_(2)^(·-)) levels in the Csspt mutant plants, with decreased Proline content after the high-temperature treatment. Transcriptome analysis showed that the photosystem and chloroplast activities in Csspt mutant plants were extremely disrupted by the high-temperature stress compared with wildtype(WT) plants. Moreover, the plant hormone signal transduction, as well as MAPK and calcium signaling pathways were activated in Csspt mutant plants under high-temperature stress. The HSF and HSP family genes shared the same upregulated expression patterns in Csspt and WT plants under high-temperature conditions. However, most bHLH, NAC, and bZIP family genes were significantly down-regulated by heat in Csspt mutant plants. Thus, these results demonstrated that CsSPT regulated the high-temperature response by recruiting photosynthesis components, signaling pathway molecules, and transcription factors. Our results provide important insights into the heat response mechanism of CsSPT in cucumber and its potential as a target for breeding heat-resistant crops.
文摘The photosynthetic rate (Pn) and carboxylation efficiency (CE) were observed to be the highest in mid-position leaves of cucumber in solar-greenhouse, second in upper and middle-lower position leaves, and lowest in lower-position leaves. The saturation light of the mid-position leaves was also the highest, while the photo compensation points of the upper, middle and lower position leaves decreased as the leaf-position descended. During the growth period, the Pn of most leaves enhanced as PFD increased. Pn curves of diurnal variation in different position leaves had single-peak which appeared at 12: 00 a. m. As the plant density increased, the PFD of different layer leaves decreased, especially of the lower position leaves. The effect of plant density on the Pn of the upper-position leaves was not visible, but on the light compensation points was obvious. As to lower position leaves, the Pn and saturation light decreased as the plant density increased, but the light compensation points were not obviously affected. Cucumber leaves had certain capacity of adaptation and adjustment to light intensity which expressed as the lower the PFD, the higher the apparent quantum yield (AQY). So the AQY increased as the leaf position descended and plant density increased.
基金supported by the National Key Technologies R&D Program during the 11th Five-Year Plan period of China (2008BADA4B05)the Excellent Young Scientist Foundation of Shandong Province,China (2006BS06019)
文摘Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosynthetic rate (Pn), stomatal conductance, as well as the maximum yield of the photosystem II photochemical reactions (Fv/Fm) and the quantum yield of photosysytem II electron transport (Φ PSII), application of Si reversed the negative effects of excess Mn. In the further investigation, it was obtained that application of Si significantly increased the activities of enzymes related with ascorbate-glutathione cycle including ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in cucumber chloroplast under excess Mn, this could be responsible for the lower accumulation of H2O2 and lower lipid peroxidation of chloroplast induced by Mn, and resulted in keeping higher photosynthesis.
基金financially supported by the National Key Research and Development Program of China(2017YFB0403902)the National Natural Science Foundation of China(31872955)the Central Publicinterest Scientific Institution Basal Research Fund,China(BSRF201911)。
文摘Light-emitting diodes(LEDs)have been widely applied in the controlled environment agriculture,which are characterized by relatively narrow-band spectra and energetical efficiency.Most recently,the spectrum of Sunlike LEDs has been engineered and it closely resembles solar spectrum in the range of photosynthetic active radiation(PAR,400–700 nm).To investigate how plant growth responses to the spectrum of Sunlike LEDs,cucumber and lettuce plants were cultivated and their responses were compared with the conventional white LEDs as well as composite of red and blue LEDs(RB,R/B ratio was 9:1).We observed that although Sunlike LEDs resulted in a longer stem in cucumber,dry weight and leaf area were similar as those under RB LEDs,and significantly higher than those under white LEDs.Moreover,cucumber leaves grown under Sunlike and white LEDs showed higher photosynthetic capacity than those grown under RB LEDs.For lettuce,plants grown under Sunlike LEDs showed larger leaf area and higher dry weight than the other two treatments.However,the leaf photosynthetic capacity of lettuce grown under Sunlike LEDs was the lowest.In this context,the spectrum induced plant functions are species-dependent.Furthermore,the three types of LEDs show distinct light spectra and they are different in many aspects.Therefore,it is difficult to attribute the different plant responses to certain specific light spectra.We conclude that plants grown under Sunlike LEDs exhibit larger leaf area,which may be due to some specific spectrum distributions(such as more far-red radiation),and consequently are favorable for light interception and therefore result in greater production.
文摘The increase of atmospheric CO 2 concentration is indisputable. In such condition, photosynthetic response of leaf is relatively well studied, while the comparison of that between single leaf and whole canopy is less emphasized. The stimulation of elevated CO 2 on canopy photosynthesis may be different from that on single leaf level. In this study, leaf and canopy photosynthesis of rice (Oryza sativa L.) were studied throughout the growing season. High CO 2 and temperature had a synergetic stimulation on single leaf photosynthetic rate until grain filling. Photosynthesis of leaf was stimulated by high CO 2, although the stimulation was decreased by higher temperature at grain filling stage. On the other hand, the simulation of elevated CO 2 on canopy photosynthesis leveled off with time. Stimulation at canopy level disappeared by grain filling stage in both temperature treatments. Green leaf area index was not significantly affected by CO 2 at maturity, but greater in plants grown at higher temperature. Leaf nitrogen content decreased with the increase of CO 2 concentration although it was not statistically significant at maturity. Canopy respiration rate increased at flowering stage indicating higher carbon loss. Shading effect caused by leaf development reached maximum at flowering stage. The CO 2 stimulation on photosynthesis was greater in single leaf than in canopy. Since enhanced CO 2 significantly increased biomass of rice stems and panicles, increase in canopy respiration caused diminishment of CO 2 stimulation in canopy net photosynthesis. Leaf nitrogen in the canopy level decreased with CO 2 concentration and may eventually hasten CO 2 stimulation on canopy photosynthesis. Early senescence of canopy leaves in high CO 2 is also a possible cause.
基金supported by the State Key Laboratory of Cotton Biology Open Fund,China(CB2021A18)the Youth Scientific Research Foundation of Shandong Academy of Agricultural Sciences,China(2016YQN09)+1 种基金the Improved Variety Project of Shandong Province,China(2020LZGC002)the China Agriculture Research System of MOF and MARA(CARS-15-05).
文摘One of the most important objectives for breeders is to develop high-yield cultivars.The increase in crop yield has met with bottlenecks after the first green revolution,and more recent efforts have been focusing on achieving high photosynthetic efficiency traits in order to enhance the yield.Leaf shape is a significant agronomic trait of upland cotton that affects plant and canopy architecture,yield,and other production attributes.The major leaf shape types,including normal,sub-okra,okra,and super-okra,with varying levels of lobe severity,are controlled by a multiple allelic series of the D-genome locus L-D_(1).To analyze the effects of L-D_(1)alleles on leaf morphology,photosynthetic related traits and yield of cotton,two sets of near isogenic lines(NILs)with different alleles were constructed in Lumianyan 22(LMY22)and Lumianyan 28(LMY28)backgrounds.The analysis of morphological parameters and the results of virus-induced gene silencing(VIGS)showed that the regulation of leaf shape by L-D_(1)alleles was similar to a gene-dosage effect.Compared with the normal leaf,deeper lobes of the sub-okra leaf improved plant canopy structure by decreasing the leaf area index(LAI)and increasing the light transmittance rate(LTR),and the mid-range LAI of sub-okra leaf also guaranteed the accumulation of cotton biomass.Although the chlorophyll content(SPAD)of sub-okra leaf was lower than those of the other two leaf shapes,the net photosynthetic rate(Pn)of sub-okra leaf was higher than those of okra leaf and normal leaf at most stages.Thus,the improvements in canopy structure,as well as photosynthetic and physiological characteristics,contributed to optimizing the light environment,thereby increasing the total biomass and yield in the lines with a sub-okra leaf shape.Our results suggest that the sub-okra leaf may have practical application in cultivating varieties,and could enhance sustainable and profitable cotton production.
文摘The canopy net photosynthesis rate of Mongolian oak (Quercus mongolica) tree species that are dominant in East Asia and Korea is estimated with empirical models derived from field experimental data obtained from the Nam-San site in Seoul, Korea for the growing period from early May to late October in 2010. The empirical models include the attenuation function of photosynthetic photon flux density (PPFD) (r2 = 0.98-0.99, p r2 = 0.99, p < 0.001) derived from the measured data at several levels within the canopy. The incident PPFD at each level within canopy significantly varies diurnally and seasonally due to the seasonal variation of the total plant area index (TPAI = leaf area index + wood silhouette area index) and the light shielding effect of light path-length through the canopy in association with the variation of solar elevation angle. Consequently, a remarkable seasonal variation of the total canopy net photosynthesis rate of Q. mongolica forest stand is found for its growing period. The PPFD exceeding 1000 μmol m-2·s-1 is found to cause the decrease of net photosynthesis rate due to the thermal stress in the early (May) and late (September) growing period. During the whole growing season, the estimated total canopy net photosynthesis rate is found to be about 3.3 kg CO2 m-2.
基金National Natural Science Foundation of China(Project No:61273227)Youth Foundation of Jiangsu Province(Project No:BK20150686).
文摘In this study,machine vision technology was used to capture images of greenhouse cucumber canopy,and image segmentation was implemented under various natural lighting conditions.The images were enhanced by multi-scale retinex with color restore(MSRCR),and the MSRCR images were segmented by four algorithms:normalized difference index(NDI),excess green(ExG),modified excess green(MExG),and modified excess green minus excess red(MExG-ExR).The results indicated that compared with the original images,under various lighting conditions,the average evaluation indexes of brightness,information entropy,average gradient and mean gray value of the MSRCR images were increased by 38.71%,8.04%,4.54%,and 37.81%,respectively,and only the contrast degree decreased by 12.13%.The MExG-ExR segmentation algorithm was used to segment the MSRCR images(fifty images under various lighting conditions in the test and it performed best among the four segmentation algorithms,average overlap ratios and recognition rates of were 99.28%and 98.91%,respectively,while 38.39%and 37.95%respectively for original image.These results indicated that the MExG-ExR segmentation algorithm applied to a MSRCR canopy image produced the most stable results among the four algorithms.By using the MSRCR image enhancement algorithm,the interference of lighting on greenhouse cucumber canopy images was reduced and the foundation for achieving accurate segmentation of a canopy region was laid,which is of great significance for greenhouse cucumber phenotypic parameter measurements.
基金This work was supported by the National Key Research and Development Program of China(2017YFB0403901).
文摘High-quality cucumber seedlings are a prerequisite for ensuring high yield of cucumbers.With the continuous increase of cucumber planting area in China,the demand for high-quality cucumber seedlings is also increasing.One of the important ways to improve the quality of cucumber seedlings is to improve the light environment by using artificial light source.In this study,three cucumber seedlings(cv.Jintong,cv.Yunv and cv.Xiazhiguang)were grown for 23 d under eight levels of daily light integral(DLI)at 4.3 mol/(m^(2)·d),8.6 mol/(m^(2)·d),10.1 mol/(m^(2)·d),13.0 mol/(m^(2)·d),5.8 mol/(m^(2)·d),11.5 mol/(m^(2)·d),14.4 mol/(m^(2)·d)and 17.3 mol/(m^(2)·d),respectively.The results showed that when DLI was 14.4 mol/(m^(2)·d),the seedling height,stem diameter,total leaf area and shoot dry/fresh weight of all three cucumber cultivars reached the maximum,while hypocotyl length decreased with the increase of light intensity.When DLI was 14.4 mol/(m^(2)·d),Jintong and Xiazhiguang had the highest health index,which were 49.29 and 28.56,respectively,while that of Yunv was 81.59(DLI=14.4 mol/(m^(2)·d)).With the increase of DLI,the photosynthetic capacity of cucumber increases gradually.The highest net photosynthetic rate was shown at DLI of 14.4 mol/(m^(2)·d),while the chlorophyll content of cucumber seedlings of all three cultivars were less affected by DLI.Jintong and Yunv had the highest chlorophyll content when DLI was 8.6 mol/(m^(2)·d)because they were adapted to low-light environment.In conclusion,the DLI of 14.4 mol/(m^(2)·d)for Jintong and Xiazhiguang,while that of 17.3 mol/(m^(2)·d)for Yunv are suggested for the light environment design of factory-cultivated seedling for cucumber.
基金supported by Chinese National Key R&D Program(Grant No.2016YFD0201118)Shanxi Province Key R&D Program(Grant No.201903D211001-24-1)+2 种基金Agricultural Sci-Tech Innovation Project Program of Shanxi Academy of Agricultural Sciences(Grant No.YGC2019TD08-2)Agricultural Sci-Tech Innovation Research Program of Shanxi Academy of Agricultural Sciences(Grant Nos.YCX2020402,YCX2020302)Prior Support Program of Shanxi Academy of Agricultural Sciences(Grant No.YCX2018D2YS04)。
文摘Although open-central canopy(OCC)is popular in apple(Malus×domestica)orchards in Loess Plateau of China,its relevant photosynthetic mechanisms have not been elucidated.In this study,changes in photosynthetically active radiation(PAR),gas exchange,chlorophyll fluorescence quenching and fruit quality in apple trees were measured in OCC and compared with those in the conventional condensed round and large canopy(RLC).Results showed that light intercepted at different orientations was 44%higher by OCC than that by RLC.The improved light environment within OCC remarkably increased leaf maximum net photosynthetic rate(Pnmax)and significantly decreased stomatal limitation.Under high light,the ratio of photorespiratory rate to gross photosynthetic rate(Pr/Pg)in OCC was higher than that in RLC.Moreover,reversible component in non-photochemical quenching(r(qE))was increased,while irreversible component(r(qI))was decreased in OCC than in RLC.As a result,the fruit quality in OCC was greatly boosted as evidenced by the significantly increased single fruit weight,fruit flesh firmness and fruit soluble solid contents and the sharply decreased fruit titratable acid contents.PAR intercepted by the canopy and the fruit soluble solid contents,leaf Pnmaxor single fruit weight were positively correlated,while PAR or Pnmaxwas negatively correlated with the fruit titratable acid contents.Accordingly,the improved crown light environment and the enhanced leaf photosynthetic performance and photoprotective capacity in OCC led to the boosted fruit quality.
文摘The paper reviews the factors and mechanisms involved in the regulation of seed growth,discusses the roles of source sink relationship in yield formation and effects of climate change and canopy photosynthesis on groth and yield in soybean.
基金supported by National Natural Science Foundation of China(NSFC Nos.31660142 and 41771099)
文摘Marginal water-use efficiency plays a critical role in plant carbon–water coupling relationships.We investigated the ecosystem marginal water-use efficiency(k)of a tropical seasonal evergreen forest to(1)determine the general pattern of k across time,(2)compare different models for calculating k,and(3)address how k varies with soil water content during different seasons.There was a U-shaped diurnal pattern in k,which was higher in the early morning and late afternoon.At other times of the day,k was lower and remained constant.Ecosystem k was higher in the wet season than in the dry season.All three models successfully captured the diurnal and seasonal patterns of k but differed in the calculated absolute values.The idea that k is constant on a subdaily scale was partly supported by our study,while a constant k was only true when data from the early morning and late afternoon were not included.Theλincreases with soil water content on a seasonal scale,possibly because early morningλremained low in dry conditions when the soil water content was low.
基金Supported by China and CAS Main Direction Program of Knowledge Innovation (KSCX2-EW-B-1)China and CAS Knowledge Innovation Project(KSCX1-YW-09-06)
文摘A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irrigation (W0), irrigation once at jointing (W1j) or at booting (W1b), irrigation twice at jointing and booting (W2), and irrigation three times at jointing, booting and grain-filling (W3) and three planting densities, such as 180 (D1), 300 (D2) and 450 (D3) seedlings per square meter. The results indicated that irrigation significantly improved population photosynthesis. The relationship between population photosynthesis and irrigation time/volume was to some extent parabolic. Improvements in population photosynthesis (resulting from more irrigation time/volume) were mainly related to increase in leaf area index and population light interception. Population photosynthesis exhibited a significantly negative correlation with canopy light transmittance. Population photosynthesis at grain filling stage was significantly positively correlated with dry matter accumulation at post-anthesis and grain yield. Main effects and partial correlation analysis showed that population photosynthesis of W0, W1j, W1b and W3 were regulated by canopy light transmittance and leaf area. On the other hand, population photosynthesis of W2 was mainly influenced by flag leaf photosynthetic rate. On this basis, planting 300 seedlings per square meter was the optimum combination. The combination of W2D2 increased population photosynthesis during mid-late growth stages and extended high population photosynthesis duration, which ultimately increased grain yield.
文摘We plan to estimate global net primary production (NPP) of vegetation using the Advanced Earth Observing Satellite\|Ⅱ (ADEOS\|Ⅱ) Global Imager (GLI) multi\|spectral data. We derive an NPP estimation algorithm from ground measurement data on temperate plants in Japan. By the algorithm, we estimate NPP using a vegetation index based on pattern decomposition (VIPD) for the Mongolian Plateau. The VIPD is derived from Landsat ETM+ multi\|spectral data, and the resulting NPP estimation is compared with ground data measured in a semi\|arid area of Mongolia. The NPP estimation derived from satellite remote sensing data agrees with the ground measurement data within the error range of 15% when all above\|ground vegetation NPP is calculated for different vegetation classifications.
文摘This study was conducted to investigate the effect of scarification on bambara groundnut(Vigna subterranea)physiological growth and development and crop phenology.Bambara groundnut landrace seeds used in this study were characterized by seed coat colour(cream,light brown and brown).Seed scarification treatments were mechanical(sand paper)and chemical(sulphuric acid)scarification,while seeds that were not scarified served as a control.A completely randomized design with three replications was used.The parameters that were assessed were time to emergence,final emergence percentage,leaf number,chlorophyll content index(CCI),canopy diameter,plant height,chlorophyll fluorescence(Fv/Fm),photosynthetic performance index(Pi),time to flowering and time to senescence.CCI,leaf number and plant height were significantly(p<0.05)influenced by seed coat colour,seed scarification treatments and their interaction thereof.Seed scarification treatment had a significant effect on CCI,leaf number and plant height.Generally,seed scarification improved plant overall performance than the control.Chemical scarification presented superior performance of bambara groundnut growth and development.Light brown seeds produced plants with superior overall performance,having superior emergence,CCI,leaf number,and early flowering and senescence.Light brown seeds were followed by cream seeds in terms of superiority of plant performance,having produced plants with superior canopy diameter,plant height and Pi.Therefore,bambara groundnut farmers and researchers can successfully use scarification to improve its physiological growth and attain earlier phenological stages,hence maturity.At the same time,light brown seeds should be selected for cultivation to give the best plant performance.