A tracking method based on adaptive multiple cue fusion mechanism was presented,where particle filter is used to integrate color and edge cues.The fusion mechanism assigns different weights to two cues according to th...A tracking method based on adaptive multiple cue fusion mechanism was presented,where particle filter is used to integrate color and edge cues.The fusion mechanism assigns different weights to two cues according to their importance,thus improving the robustness and reliability of the tracking algorithm.Moreover,a multi-part color model is also invoked to deal with the confliction among similar objects.The experimental results on two real image sequences show the tracking algorithm with adaptive fusion mechanism performs well in the presence of complex scenarios such as head rotation,scale change and multiple person occlusions.展开更多
针对美国新奥尔良地区稀疏的LiDAR(Light Detecting and Ranging)点云数据,提出了一种基于LiDAR数据和卫星图像进行融合的居民区建筑物重建方法.该方法利用LiDAR数据点集的边界来定位卫星图像上的感兴趣区域,利用从感兴趣区域中提取的...针对美国新奥尔良地区稀疏的LiDAR(Light Detecting and Ranging)点云数据,提出了一种基于LiDAR数据和卫星图像进行融合的居民区建筑物重建方法.该方法利用LiDAR数据点集的边界来定位卫星图像上的感兴趣区域,利用从感兴趣区域中提取的关键提示线来实现屋顶的分割,从而得到属于每个建筑物的屋顶点.然后,基于三角面片的法向量方向信息对其进行聚类,根据法向量之间的关系进行屋顶类型识别,从而实现居民区建筑物的重建.实验表明,该方法在进行居民区建筑物重建时,能达到较高的重建率,且重建所需时间合理,能够满足虚拟现实系统的需要.展开更多
文摘A tracking method based on adaptive multiple cue fusion mechanism was presented,where particle filter is used to integrate color and edge cues.The fusion mechanism assigns different weights to two cues according to their importance,thus improving the robustness and reliability of the tracking algorithm.Moreover,a multi-part color model is also invoked to deal with the confliction among similar objects.The experimental results on two real image sequences show the tracking algorithm with adaptive fusion mechanism performs well in the presence of complex scenarios such as head rotation,scale change and multiple person occlusions.
文摘针对美国新奥尔良地区稀疏的LiDAR(Light Detecting and Ranging)点云数据,提出了一种基于LiDAR数据和卫星图像进行融合的居民区建筑物重建方法.该方法利用LiDAR数据点集的边界来定位卫星图像上的感兴趣区域,利用从感兴趣区域中提取的关键提示线来实现屋顶的分割,从而得到属于每个建筑物的屋顶点.然后,基于三角面片的法向量方向信息对其进行聚类,根据法向量之间的关系进行屋顶类型识别,从而实现居民区建筑物的重建.实验表明,该方法在进行居民区建筑物重建时,能达到较高的重建率,且重建所需时间合理,能够满足虚拟现实系统的需要.