The intensive management practices in greenhouse production may alter the soil physicochemical properties and contribute to the accumulation of heavy metals(HMs). To determine the HM concentrations in vegetable soil i...The intensive management practices in greenhouse production may alter the soil physicochemical properties and contribute to the accumulation of heavy metals(HMs). To determine the HM concentrations in vegetable soil in relation to soil physicochemical properties and cultivation age, we conducted a soil survey for typical greenhouse soils in Shouguang, China. The results indicated that Cd is a major HM pollutant in the tested soils, as the only HM element exceeding the allowed limit for vegetable soil. The surveyed data was analyzed with regression analysis, correlation analysis and canonical correspondence analysis(CCA). A positive correlation is observed between HM pollution level and cultivation age. CCA results suggest that the HM pollution level and distribution in soil are significantly affected by soil physicochemical properties, which was a function of years of cultivation as revealed by regression analysis. In summary, cultivation age is an important factor to affect soil physicochemical properties(organic matter and inorganic nutrients) as well as HM contamination.展开更多
Systematic studies on the genesis,properties,and distribution of natural nanoparticles(NNPs)in soil remain scarce.This study examined a soil chronosequence of continuous paddy field land use for periods ranging from 0...Systematic studies on the genesis,properties,and distribution of natural nanoparticles(NNPs)in soil remain scarce.This study examined a soil chronosequence of continuous paddy field land use for periods ranging from 0 to 1000 years to determine how NNPs in soil changed at the early stages of soil genesis in eastern China.Soil samples were collected from coastal reclaimed paddy fields that were cultivated for 0,50,100,300,700,and 1000 years.Natural nanoparticles were isolated and characterized along with bulk soil samples(<2-mm fraction)for selected physical and chemical properties.The NNP content increased with increasing soil cultivation age at 60 g m^(-2) year-1,which was related to decreasing soil electrical conductivity(172-1297μS cm^(-1))and NNP zeta potentials(from -22 to -36 mV)with increasing soil cultivation age.Changes in several NNP properties,such as pedogenic iron oxide and total organic carbon contents,were consistent with those of the bulk soils across the soil chronosequence.Notably,changes in NNP iron oxide content were obvious and illustrated active chemical weathering,pedogenesis,and potential impacts on the microbial community.Redundancy analysis demonstrated that the soil cultivation age was the most important factor affecting NNP properties,contributing 60.7% of the total variation.Cluster and principal component analysis(PCA)revealed splitting of NNP samples into age groups of 50-300 and 700-1000 years,indicating rapid evolution of NNP properties,after an initial period of desalinization(approximately 50 years).Overall,this study provides new insights into NNP evolution in soil during pedogenesis and predicting their influences on agriculture and ecological risks over millennial-scale rice cultivation.展开更多
基金Under the auspices of National Key Research and Development Program of China(No.2016YFD0800304)Natural Science Foundation of Shandong(No.ZR2017MD023,ZR2018BD003)
文摘The intensive management practices in greenhouse production may alter the soil physicochemical properties and contribute to the accumulation of heavy metals(HMs). To determine the HM concentrations in vegetable soil in relation to soil physicochemical properties and cultivation age, we conducted a soil survey for typical greenhouse soils in Shouguang, China. The results indicated that Cd is a major HM pollutant in the tested soils, as the only HM element exceeding the allowed limit for vegetable soil. The surveyed data was analyzed with regression analysis, correlation analysis and canonical correspondence analysis(CCA). A positive correlation is observed between HM pollution level and cultivation age. CCA results suggest that the HM pollution level and distribution in soil are significantly affected by soil physicochemical properties, which was a function of years of cultivation as revealed by regression analysis. In summary, cultivation age is an important factor to affect soil physicochemical properties(organic matter and inorganic nutrients) as well as HM contamination.
基金supported by the National Natural Science Foundation of China(Nos.41721001 and 41130532)。
文摘Systematic studies on the genesis,properties,and distribution of natural nanoparticles(NNPs)in soil remain scarce.This study examined a soil chronosequence of continuous paddy field land use for periods ranging from 0 to 1000 years to determine how NNPs in soil changed at the early stages of soil genesis in eastern China.Soil samples were collected from coastal reclaimed paddy fields that were cultivated for 0,50,100,300,700,and 1000 years.Natural nanoparticles were isolated and characterized along with bulk soil samples(<2-mm fraction)for selected physical and chemical properties.The NNP content increased with increasing soil cultivation age at 60 g m^(-2) year-1,which was related to decreasing soil electrical conductivity(172-1297μS cm^(-1))and NNP zeta potentials(from -22 to -36 mV)with increasing soil cultivation age.Changes in several NNP properties,such as pedogenic iron oxide and total organic carbon contents,were consistent with those of the bulk soils across the soil chronosequence.Notably,changes in NNP iron oxide content were obvious and illustrated active chemical weathering,pedogenesis,and potential impacts on the microbial community.Redundancy analysis demonstrated that the soil cultivation age was the most important factor affecting NNP properties,contributing 60.7% of the total variation.Cluster and principal component analysis(PCA)revealed splitting of NNP samples into age groups of 50-300 and 700-1000 years,indicating rapid evolution of NNP properties,after an initial period of desalinization(approximately 50 years).Overall,this study provides new insights into NNP evolution in soil during pedogenesis and predicting their influences on agriculture and ecological risks over millennial-scale rice cultivation.