期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rice Cultivation under Film Mulching Can Improve Soil Environment and Be Beneficial for Rice Production in China
1
作者 ZHANG Youliang ZHU Kaican +1 位作者 TANG Yongqi FENG Shaoyuan 《Rice science》 SCIE 2024年第5期545-555,共11页
Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages,... Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed. 展开更多
关键词 nitrogen use efficiency rice cultivation under film mulching soil organic matter yield and quality water use efficiency
下载PDF
Much Improved Water Use Efficiency of Rice under Non-Flooded Mulching Cultivation 被引量:6
2
作者 Guo-Wei Xu Zi-Chang Zhang +1 位作者 Jian-Hua Zhang Jian-Chang Yang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第10期1527-1534,共8页
Water shortage is increasingly limiting the luxury use of water in rice cultivation. In this study, non-flooded mulching cultivation of rice only consumed a fraction of the water that was needed for traditional floode... Water shortage is increasingly limiting the luxury use of water in rice cultivation. In this study, non-flooded mulching cultivation of rice only consumed a fraction of the water that was needed for traditional flooded cultivation and largely maintained the grain yield. We also investigated the growth and development of rice plants and examined grain yield formation when rice was subjected to non-flooded mulching cultivation. One indica hybrid rice combination was grown in a field experiment and three cultivation methods, traditional flooding (TF), non-flooded straw mulching cultivation (SM) and non-flooded plastic mulching cultivation (PM), were conducted during the whole season. Grain yield showed that there was no significant difference between SM and TF rice, but the grain yield of SM cultivation was significantly higher than that of PM. The tiller numbers were inhibited in the early stage under non-flooded mulching cultivation, but the situation was reversed at the later period. Both SM and PM rice reduced dry matter accumulation of shoot, but increased root dry weight, enhanced the remobilization of assimilates from stems to grains and increased the harvest index. During the middle and later grain filling period, mulched plants showed a faster decrease in chlorophyll concentrations, photosynthetic rates of flag leaves and root activity than TF rice, indicating that non-flooded mulching cultivation enhanced plant senescence. In comparison, SM treatment produced higher grain yield and, more dry matter accumulation and panicle numbers than the PM treatment. The overall results suggest that high yield of non-flooded mulching cultivation of rice can be achieved with much improved irrigaUonal water use efficiency. 展开更多
关键词 IRRIGATION mulching cultivation rice (Oryza sativa) water-saving cultivation water use efficiency.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部