Objective To investigate the potential effects of herbicide quinclorac (3,7-dichloro-8-quinoline-carboxylic) on the culturable microorganisms in flooded paddy soil. Methods Total soil aerobic bacteria, actinomycetes a...Objective To investigate the potential effects of herbicide quinclorac (3,7-dichloro-8-quinoline-carboxylic) on the culturable microorganisms in flooded paddy soil. Methods Total soil aerobic bacteria, actinomycetes and fungi were counted by a 10-fold serial dilution plate technique. Numbers of anaerobic fermentative bacteria (AFB), denitrifying bacteria (DNB) and hydrogen-producing acetogenic bacteria (HPAB) were numerated by three-tube anaerobic most-probable-number (MPN) methods with anaerobic liquid enrichment media. The number of methanogenic bacteria (MB) and nitrogen-fixing bacteria (NFB) was determined by the rolling tube method in triplicate. Soil respiration was monitored by a 102G-type gas chromatography with a stainless steel column filled with GDX-104 and a thermal conductivity detector. Results Quinclorac concentration was an important factor affecting the populations of various culturable microorganisms. There were some significant differences in the aerobic heterotrophic bacteria. AFB and DNB between soils were supplemented with quinclorac and non-quinclorac at the early stage of incubation, but none of them was persistent. The number of fungi and DNB was increased in soil samples treated by lower than 1.33μg·g-1 dried soil, while the CFU of fungi and HPAB was inhibited in soil samples treated by higher than 1.33μg·g-1 dried soil. The population of actinomycete declined in negative proportion to the concentrations of quinclorac applied after 4 days. However, application of quinclorac greatly stimulated the growth of AFB and NFB. MB was more sensitive to quinclorac than the others, and the three soil samples with concentrations higher than 1 μg·g-1 dried soil declined significantly to less than 40% of that in the control, but the number of samples with lower concentrations of quinclorac was nearly equal to that in the control at the end of experiments. Conclusion Quinclorac is safe to the soil microorganisms when applied at normal concentrations (0.67μg·g-1).展开更多
The effect of aeration conditions and pH control on the progress and efficiency of beet molasses vinasse biodegradation was investigated during four batch processes at 38°C with the mixed microbial culture compos...The effect of aeration conditions and pH control on the progress and efficiency of beet molasses vinasse biodegradation was investigated during four batch processes at 38°C with the mixed microbial culture composed of Bifidobacterium,Lactobacillus,Lactococcus,Streptococcus,Bacillus,Rhodopseudomonas,and Saccharomyces.The four processes were carried out in a shake flask with no pH control,an aerobic bioreactor without mixing with no pH control,and a stirred-tank reactor (STR) with aeration with and without pH control,respectively.All experiments were started with an initial pH 8.0.The highest efficiency of biodegradation was achieved through the processes conducted in the STR,where betaine (an organic pollutant occurring in beet molasses in very large quantities) was completely degraded by the microorganisms.The process with no pH control carried out in the STR produced the highest reduction in the following pollution measures:organic matter expressed as chemical oxygen demand determined by the dichromatic method + theoretical COD of betaine (COD sum,85.5%),total organic carbon (TOC,78.8%) and five-day biological oxygen demand (BOD 5,98.6%).The process conditions applied in the shake flask experiments,as well as those used in the aerobic bioreactor without mixing,failed to provide complete betaine assimilation.As a consequence,reduction in COD sum,TOC and BOD 5 was approximately half that obtained with STR.展开更多
基金This work was supported by the National 863 Programm of China "Bioengineering Technique Project 2002A2104101
文摘Objective To investigate the potential effects of herbicide quinclorac (3,7-dichloro-8-quinoline-carboxylic) on the culturable microorganisms in flooded paddy soil. Methods Total soil aerobic bacteria, actinomycetes and fungi were counted by a 10-fold serial dilution plate technique. Numbers of anaerobic fermentative bacteria (AFB), denitrifying bacteria (DNB) and hydrogen-producing acetogenic bacteria (HPAB) were numerated by three-tube anaerobic most-probable-number (MPN) methods with anaerobic liquid enrichment media. The number of methanogenic bacteria (MB) and nitrogen-fixing bacteria (NFB) was determined by the rolling tube method in triplicate. Soil respiration was monitored by a 102G-type gas chromatography with a stainless steel column filled with GDX-104 and a thermal conductivity detector. Results Quinclorac concentration was an important factor affecting the populations of various culturable microorganisms. There were some significant differences in the aerobic heterotrophic bacteria. AFB and DNB between soils were supplemented with quinclorac and non-quinclorac at the early stage of incubation, but none of them was persistent. The number of fungi and DNB was increased in soil samples treated by lower than 1.33μg·g-1 dried soil, while the CFU of fungi and HPAB was inhibited in soil samples treated by higher than 1.33μg·g-1 dried soil. The population of actinomycete declined in negative proportion to the concentrations of quinclorac applied after 4 days. However, application of quinclorac greatly stimulated the growth of AFB and NFB. MB was more sensitive to quinclorac than the others, and the three soil samples with concentrations higher than 1 μg·g-1 dried soil declined significantly to less than 40% of that in the control, but the number of samples with lower concentrations of quinclorac was nearly equal to that in the control at the end of experiments. Conclusion Quinclorac is safe to the soil microorganisms when applied at normal concentrations (0.67μg·g-1).
文摘The effect of aeration conditions and pH control on the progress and efficiency of beet molasses vinasse biodegradation was investigated during four batch processes at 38°C with the mixed microbial culture composed of Bifidobacterium,Lactobacillus,Lactococcus,Streptococcus,Bacillus,Rhodopseudomonas,and Saccharomyces.The four processes were carried out in a shake flask with no pH control,an aerobic bioreactor without mixing with no pH control,and a stirred-tank reactor (STR) with aeration with and without pH control,respectively.All experiments were started with an initial pH 8.0.The highest efficiency of biodegradation was achieved through the processes conducted in the STR,where betaine (an organic pollutant occurring in beet molasses in very large quantities) was completely degraded by the microorganisms.The process with no pH control carried out in the STR produced the highest reduction in the following pollution measures:organic matter expressed as chemical oxygen demand determined by the dichromatic method + theoretical COD of betaine (COD sum,85.5%),total organic carbon (TOC,78.8%) and five-day biological oxygen demand (BOD 5,98.6%).The process conditions applied in the shake flask experiments,as well as those used in the aerobic bioreactor without mixing,failed to provide complete betaine assimilation.As a consequence,reduction in COD sum,TOC and BOD 5 was approximately half that obtained with STR.