Global long-term emission reduction targets need well defined options for equitable allocation of greenhouse gas emissions. Scholars from developing countries put forward the concept of equitable per capita cumulative...Global long-term emission reduction targets need well defined options for equitable allocation of greenhouse gas emissions. Scholars from developing countries put forward the concept of equitable per capita cumulative emission rights. There are four possible operational definitions resulting from this concept. These potential options for allocation of emission rights are expressed with mathematical equations. Through simple simulation, this paper reveals the advantages, disadvantages and characteristics of each option.展开更多
This paper uses Lorenz curve and Gini index with adjustment to per capita historical cumulative emission to construct carbon Gini index to measure inequality in climate change area. The analysis shows that 70% of carb...This paper uses Lorenz curve and Gini index with adjustment to per capita historical cumulative emission to construct carbon Gini index to measure inequality in climate change area. The analysis shows that 70% of carbon space in the atmosphere has been used for unequal distribution, which is almost the same as that of incomes in a country with the biggest gap between the rich and the poor in the world. The carbon equity should be an urgency and priority in the climate agenda. Carbon Gini index established in this paper can be used to measure inequality in the distribution of carbon space and provide a quantified indicator for measurement of carbon equity among different proposals.展开更多
Climate change has become a hot topic in international environmental negotiations.For post-Kyoto international climate regime negotiations,many countries have proposed a variety of frameworks to share the emission red...Climate change has become a hot topic in international environmental negotiations.For post-Kyoto international climate regime negotiations,many countries have proposed a variety of frameworks to share the emission reduction responsibilities and allocate carbon emission rights,and have tried to quantify the emission reduction obligations of all countries based on the perspectives of international equity and individual equity.In this paper,the authors have distinguished the concepts of carbon emissions rights based on these two perspectives respectively,have analyzed the relationship between carbon emissions per capita and economic development,and have calculated and compared the proportion of cumulative emissions per capita of different countries in history and future,and then authors conclude that emission reduction obligations should be allocated based on each country's conditions,including historical emissions,development stage,and future demands.Developed countries should take the initiative to significantly reduce their emissions because they have already accomplished their industrialization process.However,developing countries are still in the process of industrialization,which requires more emission rights to meet their development needs.For China,the concept of carbon emissions based on individual equity can be used as a theoretical tool for the allocating the international carbon emissions rights.展开更多
With global climate change, soil drying-rewetting(DRW) events have intensified and occurred frequently on the Loess Plateau of China. However, the extent to which the DRW cycles with different wetting intensities and ...With global climate change, soil drying-rewetting(DRW) events have intensified and occurred frequently on the Loess Plateau of China. However, the extent to which the DRW cycles with different wetting intensities and cycle numbers alter microbial community and respiration is barely understood. Here,indoor DRW one and four cycles treatments were implemented on soil samples obtained from the Loess Plateau, involving increase of soil moisture from10% water-holding capacity(WHC) to 60% and 90% WHC(i.e., 10%–60% and 10%–90% WHC, respectively). Constant soil moistures of 10%, 60%,and 90% WHC were used as the controls. The results showed that bacterial diversity and richness decreased and those of fungi remained unchanged under DRW treatments compared to the controls. Under all moisture levels, Actinobacteriota and Ascomycota were the most dominant bacterial and fungal phyla,respectively. The bacterial network was more complex than that of fungi, indicating that bacteria had a greater potential for interaction and niche sharing under DRW treatments. The pulse of respiration rate declined as the DRW cycle increased under 10%–60% WHC, but remained similar for different cycles under 10%–90% WHC. Moreover, the DRW treatments reduced the overall carbon loss, and the direct carbon release under 10%–60% WHC was larger than that under 10%–90% WHC. The cumulative CO_(2) emissions after four DRW cycles were significantly positively correlated with microbial biomass carbon and negatively correlated with fungal richness(Chao 1).展开更多
Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N_(2)O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of ...Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N_(2)O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of nitrification inhibitors and tillage practices on N_(2)O emissions from maize cropping in Iran.To study how tillage practices and nitrapyrin(a nitrification inhibitor)affect N_(2)O emission,a split factorial experiment using a completely randomized block design with three replications was carried out in Northeast Iran,which has a cold semiarid climate.Two main plots were created with conventional tillage and minimum tillage levels,and two nitrogen(N)fertilizer(urea)management systems(with and without nitrapyrin application)were created as subplots.Tillage level did not have any significant effect on soil ammonium(NH_(4)^(+))and nitrate(NO_(3)^(-))concentrations,cumulative amount and yield-scaled N_(2)O emission,and aboveground biomass of maize,whereas nitrapyrin application showed significant effect.Nitrapyrin application significantly reduced the cumulative amount of N_(2)O emission by 41%and 32%in conventional tillage and minimum tillage practices,respectively.A reduction in soil NO_(3)^(-)concentration by nitrapyrin was also observed.The average yield-scaled N_(2)O emission was 13.6 g N_(2)O-N kg^(-1)N uptake in both tillage systems without nitrapyrin application and was significantly reduced to 7.9 and 8.2 g N_(2)O-N kg^(-1)N uptake upon the application of nitrapyrin in minimum tillage and conventional tillage practices,respectively.Additionally,nitrapyrin application increased maize biomass yield by 4%and 13%in the minimum tillage and conventional tillage systems,respectively.Our results indicate that nitrapyrin has a potential role in reducing N_(2)O emission from agricultural systems where urea fertilizers are broadcasted,which is common in Iran due to the practice of traditional farming.展开更多
Aims Soil CO_(2) emission from steppes is affected by soil properties and vegetation in different successional stages.Primary and secondary succession of plants frequently occurred at the meadow steppe in Songnen Plai...Aims Soil CO_(2) emission from steppes is affected by soil properties and vegetation in different successional stages.Primary and secondary succession of plants frequently occurred at the meadow steppe in Songnen Plain,Northeast China,which indicates the large uncer-tainty associated with CO_(2) emission in this environment.This study aims to investigate the temporal variations of soil respiration(Rs)and the effect of plant succession on cumulative soil CO_(2) emission during the growing season.Methods Using a LI-6400 soil CO_(2) flux system,Rs of five vegetation types which represented different stages of plant succession in meadow steppes of Songnen Plain,China,was investigated during the grow-ing seasons of 2011 and 2012.Important Findings Soil temperature(Ts)was the dominant controlling factor of Rs,which could explain~64%of the change in CO_(2) fluxes.The Q10 values of Rs were ranged from 2.0 to 6.7,showing a decreasing trend with the plant successional stages.The cumulative CO_(2) emis-sion increased with the degree of vegetation succession and it aver-aged to 316±6 g C m^(−2)(ranges:74.8±6.7 to 516.5±11.4 g C m^(−2))during the growing season.The magnitude of soil CO_(2) emission during the growing season was positively correlated with above-ground plant biomass,soil organic carbon content and mean soil water content,while negatively linked to mean Ts,pH,electrical conductivity and exchangeable sodium percentages.The results implied that soil CO_(2) emission increased with the development of plant communities toward more advanced stages.Our findings pro-vided valuable information for understanding the variations of CO_(2) emission in the process of vegetation succession.展开更多
基金supported by the 2009 special study project employing basic scientific research fund of the Academy of Macroeconomic Research of NDRC
文摘Global long-term emission reduction targets need well defined options for equitable allocation of greenhouse gas emissions. Scholars from developing countries put forward the concept of equitable per capita cumulative emission rights. There are four possible operational definitions resulting from this concept. These potential options for allocation of emission rights are expressed with mathematical equations. Through simple simulation, this paper reveals the advantages, disadvantages and characteristics of each option.
基金National Basic Research Programme(No.2010CB955303)
文摘This paper uses Lorenz curve and Gini index with adjustment to per capita historical cumulative emission to construct carbon Gini index to measure inequality in climate change area. The analysis shows that 70% of carbon space in the atmosphere has been used for unequal distribution, which is almost the same as that of incomes in a country with the biggest gap between the rich and the poor in the world. The carbon equity should be an urgency and priority in the climate agenda. Carbon Gini index established in this paper can be used to measure inequality in the distribution of carbon space and provide a quantified indicator for measurement of carbon equity among different proposals.
文摘Climate change has become a hot topic in international environmental negotiations.For post-Kyoto international climate regime negotiations,many countries have proposed a variety of frameworks to share the emission reduction responsibilities and allocate carbon emission rights,and have tried to quantify the emission reduction obligations of all countries based on the perspectives of international equity and individual equity.In this paper,the authors have distinguished the concepts of carbon emissions rights based on these two perspectives respectively,have analyzed the relationship between carbon emissions per capita and economic development,and have calculated and compared the proportion of cumulative emissions per capita of different countries in history and future,and then authors conclude that emission reduction obligations should be allocated based on each country's conditions,including historical emissions,development stage,and future demands.Developed countries should take the initiative to significantly reduce their emissions because they have already accomplished their industrialization process.However,developing countries are still in the process of industrialization,which requires more emission rights to meet their development needs.For China,the concept of carbon emissions based on individual equity can be used as a theoretical tool for the allocating the international carbon emissions rights.
基金supported by the Provincial Natural Science Foundation of Hunan, China (No. 2020JJ4429)the Open Fund of the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau of China (No. A314021402-202101)the Hundred-Talent Project of Chinese Academy of Sciences (No. A315021407).
文摘With global climate change, soil drying-rewetting(DRW) events have intensified and occurred frequently on the Loess Plateau of China. However, the extent to which the DRW cycles with different wetting intensities and cycle numbers alter microbial community and respiration is barely understood. Here,indoor DRW one and four cycles treatments were implemented on soil samples obtained from the Loess Plateau, involving increase of soil moisture from10% water-holding capacity(WHC) to 60% and 90% WHC(i.e., 10%–60% and 10%–90% WHC, respectively). Constant soil moistures of 10%, 60%,and 90% WHC were used as the controls. The results showed that bacterial diversity and richness decreased and those of fungi remained unchanged under DRW treatments compared to the controls. Under all moisture levels, Actinobacteriota and Ascomycota were the most dominant bacterial and fungal phyla,respectively. The bacterial network was more complex than that of fungi, indicating that bacteria had a greater potential for interaction and niche sharing under DRW treatments. The pulse of respiration rate declined as the DRW cycle increased under 10%–60% WHC, but remained similar for different cycles under 10%–90% WHC. Moreover, the DRW treatments reduced the overall carbon loss, and the direct carbon release under 10%–60% WHC was larger than that under 10%–90% WHC. The cumulative CO_(2) emissions after four DRW cycles were significantly positively correlated with microbial biomass carbon and negatively correlated with fungal richness(Chao 1).
基金funded by the International Atomic Energy Agency,Vienna,through the coordinated research project Minimizing Farming Impacts on Climate Change by Enhancing Carbon and Nitrogen Capture and Storage in AgroEcosystems(No.18595)of Soil and Water Management and Crop Nutrition Section,Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,Department of Nuclear Sciences and Applications,Vienna,Austria。
文摘Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N_(2)O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of nitrification inhibitors and tillage practices on N_(2)O emissions from maize cropping in Iran.To study how tillage practices and nitrapyrin(a nitrification inhibitor)affect N_(2)O emission,a split factorial experiment using a completely randomized block design with three replications was carried out in Northeast Iran,which has a cold semiarid climate.Two main plots were created with conventional tillage and minimum tillage levels,and two nitrogen(N)fertilizer(urea)management systems(with and without nitrapyrin application)were created as subplots.Tillage level did not have any significant effect on soil ammonium(NH_(4)^(+))and nitrate(NO_(3)^(-))concentrations,cumulative amount and yield-scaled N_(2)O emission,and aboveground biomass of maize,whereas nitrapyrin application showed significant effect.Nitrapyrin application significantly reduced the cumulative amount of N_(2)O emission by 41%and 32%in conventional tillage and minimum tillage practices,respectively.A reduction in soil NO_(3)^(-)concentration by nitrapyrin was also observed.The average yield-scaled N_(2)O emission was 13.6 g N_(2)O-N kg^(-1)N uptake in both tillage systems without nitrapyrin application and was significantly reduced to 7.9 and 8.2 g N_(2)O-N kg^(-1)N uptake upon the application of nitrapyrin in minimum tillage and conventional tillage practices,respectively.Additionally,nitrapyrin application increased maize biomass yield by 4%and 13%in the minimum tillage and conventional tillage systems,respectively.Our results indicate that nitrapyrin has a potential role in reducing N_(2)O emission from agricultural systems where urea fertilizers are broadcasted,which is common in Iran due to the practice of traditional farming.
基金National Natural Science Foundation of China(31100403,41101207)Special Fund for Agro-scientific Research in the Public Interest,China(201303095-8).
文摘Aims Soil CO_(2) emission from steppes is affected by soil properties and vegetation in different successional stages.Primary and secondary succession of plants frequently occurred at the meadow steppe in Songnen Plain,Northeast China,which indicates the large uncer-tainty associated with CO_(2) emission in this environment.This study aims to investigate the temporal variations of soil respiration(Rs)and the effect of plant succession on cumulative soil CO_(2) emission during the growing season.Methods Using a LI-6400 soil CO_(2) flux system,Rs of five vegetation types which represented different stages of plant succession in meadow steppes of Songnen Plain,China,was investigated during the grow-ing seasons of 2011 and 2012.Important Findings Soil temperature(Ts)was the dominant controlling factor of Rs,which could explain~64%of the change in CO_(2) fluxes.The Q10 values of Rs were ranged from 2.0 to 6.7,showing a decreasing trend with the plant successional stages.The cumulative CO_(2) emis-sion increased with the degree of vegetation succession and it aver-aged to 316±6 g C m^(−2)(ranges:74.8±6.7 to 516.5±11.4 g C m^(−2))during the growing season.The magnitude of soil CO_(2) emission during the growing season was positively correlated with above-ground plant biomass,soil organic carbon content and mean soil water content,while negatively linked to mean Ts,pH,electrical conductivity and exchangeable sodium percentages.The results implied that soil CO_(2) emission increased with the development of plant communities toward more advanced stages.Our findings pro-vided valuable information for understanding the variations of CO_(2) emission in the process of vegetation succession.