Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45...Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45 km. In order to verify two radiation schemes and four cumulus convection schemes, eight experiments are performed with different combinations of physics parameterization schemes. The results show that eight experiments present reasonable spatial patterns of surface air temperature and precipitation in boreal summer, with the spatial correlation coefficient (COR) between simulated and observed temperature exceeding 0.95, and that between simulated and observed precipitation ranges from 0.65 to 0.82. The four experiments with the RRTMG radiation scheme show a better performance than the other four experiments with the CAM radiation scheme. In the four experiments with the RRTMG radiation scheme, the COR between simulated and observed surface air temperature is about 0.98, and that between simulated and observed precipitation ranges from 0.76 to 0.82. Comparatively, the two experiments using the new Tiedtke cumulus parameterization scheme can simulate better diurnal variation of precipitation in boreal summer than the other six experiments. In particular, for the diurnal cycle of precipitation over land and ocean, the experiment using the RRTMG radiation scheme and the new Tiedtke cumulus convection scheme shows that the peaks of precipitation rate appear at 0400 LST and 1600 LST, in agreement with observation.展开更多
The diagnostic model of the cumulus convection proposed by Yanai et al. (1973) was applied to the atmosphere over the Tibetan Plateau, and used to estimate the vertical mass flux, entrainment and detrainment, excess t...The diagnostic model of the cumulus convection proposed by Yanai et al. (1973) was applied to the atmosphere over the Tibetan Plateau, and used to estimate the vertical mass flux, entrainment and detrainment, excess temperature and moisture, liquid water content, and condensation and precipitation rates of highland cloud clusters. The results illustrated that in clouds over the Tibetan Plateau, the water vapor condensation rate, liquid water content, and efficiency of the rain generation process are less than those in the tropics (represented by the Marshall Islands region). Therefore, the condensational latent heat released over the Tibetan Plateau, overall, is much smaller than that in the tropics. The water vapor and liquid water detrainment from shallow nonprecipitating cumulus clouds, and their entrainment into deep cumulus clouds, serve as a growing mechanism for the deep precipitating cumulus towers over the Tibetan Plateau. It should be noted that there is a stronger detrainment of liquid water from cumulus clouds and a stronger re-evaporation rate in environment. The process of the condensation-detrainment-re-evaporation-cnlrainmcnt is repeatedly in progress. It would play an important role in maintaining of cumulus convection on the condition that the supply of moisture is not plentiful over the Tibetan Plateau.The analyses also showed that the cloud mass flux Mc over the Tibetan Plateau is less, and the large-scale average upward motion is much less than those over the Marshall Islands. Stronger compensating downward motion in the cloud environment over the Tibetan Plateau, responsible for the area's strong environmental heating rate Was revealed, and would link to the stability of the South Asian High in summer.展开更多
By comparison of simulated cumulus convection processes in RegCM2,using the Kuo scheme, the Grell scheme and the mass flux scheme (MFS),it is found that the MFS can simulate the cumulus heating and moistening very wel...By comparison of simulated cumulus convection processes in RegCM2,using the Kuo scheme, the Grell scheme and the mass flux scheme (MFS),it is found that the MFS can simulate the cumulus heating and moistening very well.A series of sensitivity tests show that the parameters for specifying the conversion coefficient from cloud droplets to raindrops,the turbulent entrainment and detrainment rates in updrafts anddowndrafts,and the intensity of thedowndrafts have different degrees of influence upon the cumulus convection.Therefore.it is quite important for cumulus parameterization scheme to define these parameters as accurately as possible.展开更多
A single-column model is constructed based on parameterizations inherited from the Finite-volume/Spectral Atmospheric Model F/SAMIL and tested in simulations of tropical convective systems. Two representative convecti...A single-column model is constructed based on parameterizations inherited from the Finite-volume/Spectral Atmospheric Model F/SAMIL and tested in simulations of tropical convective systems. Two representative convection schemes are compared in terms of their performances on precipitation types, individual physical tendencies, and temperature and moisture fields. The main difference between the two selected schemes is in their representation of entraining/detraining process. The Tiedtke scheme assumes bulk entrainment, while the Zhang–Mc Farlane scheme parameterizes entrainment/detrainment rates under the spectrum concept. Large-scale forcing and verification data are taken from the GATE phase III field campaign, during which abundant convective events were observed. Given the same triggering function and closure assumption, results show that entrainment/detrainment representation remains the dominant factor on the simulation of cumulus mass flux and of temperature and moisture fields. By analyzing sources and sinks of heat and moisture, this study reveals how parameterization components compensate for each other and make model results insensitive to parameterization changes in certain fields, thus suggesting the need to treat parameterizations as systems rather than individual components.展开更多
A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rownt...A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rowntree (1989; 1990). This convection scheme uses a 'bulk' cloud model to present an ensemble of convective clouds, and aims to represent shallow, deep, and mid-level convection. At present, this convection scheme is employed in the NCC T63L20 model (National Climate Center, China Meteorological Administration). Simulation results with this scheme have revealed some deficiencies in the scheme, although to some extent, it improves the accuracy of the simulation. In order to alleviate the deficiencies and reflect the effect of cumulus convection in the actual atmosphere, the scheme is modified and improved. The improvements include (i) the full estimation of the effects of the large-scale convergence in the lower layer upon cumulus convection, (ii) the revision of the initial convective mass flux, and (iii) the regulation of convective-scale downdrafts. A comparison of the results obtained by using the original model and the modified one shows that the improvement and modification of the original convection scheme is successful in simulating the precipitation and general circulation field, because the modified scheme provides a good simulation of the main features of seasonal precipitation in China, and an analysis of the anomaly correlation coefficient between the simulation and the observations confirms the improved results.展开更多
The NCC T63L20 model of the National Climate Center, China Meteorological Administration is employed to simulate the 1998 summer flood, which mainly occurred in the region of the Yangtze River and Northeast China. For...The NCC T63L20 model of the National Climate Center, China Meteorological Administration is employed to simulate the 1998 summer flood, which mainly occurred in the region of the Yangtze River and Northeast China. For this study, two kinds of cumulus convection parameterized schemes are employed in this model respectively. The simulations show that the Gregory parameterized scheme, which is still used in the United Kingdom Meteorological Office routine model, simulates more reasonable rainfall amount and distribution compared to the Kuo-type scheme. Moreover, the Gregory scheme better simulates the tendency of general circulation than the Kuo-type scheme. On the whole, the Gregory scheme provides a good simulation of the main features of the seasonal precipitation and general circulation in China, although the simulated result still exhibits some departures from the observations.展开更多
This study investigates the capability of the dynamic downscaling method (DDM) in an East Asian climate study for June 1998 using the fifth-generation Pennsylvania State University-National Center for Atmospheric Re...This study investigates the capability of the dynamic downscaling method (DDM) in an East Asian climate study for June 1998 using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research non-hydrostatic Mesoscale Model (MM5).Sensitivity experiments show that MM5 results at upper atmospheric levels cannot match reanalyses data,but the results show consistent improvement in simulating moisture transport at low levels.The downscaling ability for precipitation is regionally dependent.During the monsoon season over the Yangtze River basin and the pre-monsoon season over North China,the DDM cannot match observed precipitation.Over Northwest China and the Tibetan Plateau (TP),where there is high topography,the DDM shows better performance than reanalyses.Simulated monsoon evolution processes over East Asia,however,are much closer to observational data than reanalyses.The convection scheme has a substantial impact on extreme rainfall over the Yangtze River basin and the pre-monsoon over North China,but only a marginal contribution for Northwest China and the TP.Land surface parameterizations affect the locations and pattern of rainfall bands.The 10-day re-initialization in this study shows some improvement in simulated precipitation over some sub-regions but with no obvious improvement in circulation.The setting of the location of lateral boundaries (LLB) westward improves performance of the DDM.Including the entire TP in the western model domain improves the DDM performance in simulating precipitation in most sub-regions.In addition,a seasonal simulation demonstrates that the DDM can also obtain consistent results,as in the June case,even when another two months consist of no strong climate/weather events.展开更多
In terms of a baroclinic quasi-geostrophic waveufiltering technique in connection with a dimensionless parameter,n(z),of condensation-released latent heat that indicates the CISK mechanism,a model is established for d...In terms of a baroclinic quasi-geostrophic waveufiltering technique in connection with a dimensionless parameter,n(z),of condensation-released latent heat that indicates the CISK mechanism,a model is established for describing tropical atmosphere CISK-Rossby waves alongside its analytical solution. Theoretical study shows that thereexists pronounced difference between Rossby waves, CISK-involving and classic, and the former can be used to interpret some aspects of the low--frequency oscillation in the tropical atmosphere.展开更多
Based on the existing cumulus convective parameterization schemes,a mass flux scheme (MFS)for cumulus convective parameterization has been successfully developed by reference to the work of Chen et al.(1996).The MFS i...Based on the existing cumulus convective parameterization schemes,a mass flux scheme (MFS)for cumulus convective parameterization has been successfully developed by reference to the work of Chen et al.(1996).The MFS is a comprehensive scheme.In MFS,not only the importance of the large-scale moisture convergence is taken into account,but also it includes the cumulus updrafts and downdrafts,cumulus-induced subsidence in the environmental air. entrainment,detrainment and evaporation.The interaction between the cumulus and the environment is described by using a one-dimensional bulk model.At the same time the scheme includes the penetrative and shallow convections. The MFS has been successfully incorporated into the regional climate model RegCM2 developed by NCAR.The new model has been applied to simulate summer monsoon characteristics and their variations of heavy rainfall process in the Changjiang-Huaihe River Basins for three months from May to July 1991.The results show that the new model can successfully simulate this rainfall prolonged process.By comparising the model outputs of RegCM2.using the Kuo scheme and the MFS.it is found that the MFS is better in simulating the surface temperature,rainfall position and amount,and rainfall duration.展开更多
An atmospheric general circulation model is used in a series of three experiments to simulate the intraseasonal oscillation in the tropical atmosphere.Analyses of the model daily data show that various physical variab...An atmospheric general circulation model is used in a series of three experiments to simulate the intraseasonal oscillation in the tropical atmosphere.Analyses of the model daily data show that various physical variables,from sever- al different regions,exhibit fluctuations with a spectral peak between 30 and 60 days.This represents a 30—60 day oscillation in the tropical atmosphere and possesses several features which are consistent with observations.These in- clude a horizontal structure dominated by zonal wavenumber 1 and a vertical structure which is predominantly baroclinic. The effect of warm SST (sea surface temperature) anomalies on the 30—60 day oscillation in the tropical atmos- phere is also simulated by prescribing global SST as observed in 1983.This has the effect of weakening the oscillation while at the same time the vertical structure becomes less baroclinic. The importance of cumulus convection to the propagational characteristics of this oscillation is demonstrated by a comparison of results based on different parameterizations for convection.In one case,where the maximum convection over the Pacific is simulated to be too far east,the simulated 30—60 day oscillation shows evidence of westward propa- gation.In the second case,where the convection maximum is located near the observed position in the western Pacific, there is more clearly evidence of eastward propagation. Both results suggest that the location of maximum convection in the Pacific can have an important influence on the strength,structure and propagation of the 30—60 day oscillation.展开更多
By using the NCEP/NCAR reanalysis data from 1958 to 1997, we first looked into the atmospheric flow conditions in the one month immediately prior to the onset of the South China Sea summer monsoon (SCSSM) each year....By using the NCEP/NCAR reanalysis data from 1958 to 1997, we first looked into the atmospheric flow conditions in the one month immediately prior to the onset of the South China Sea summer monsoon (SCSSM) each year. A monthly-averaged zonal basic flow of 40-yr composite was then calculated. The stability of Rossby wave in the basic flow was studied based on the spherical barotropic vorticity equation. Furthermore, the spectral function expansion method was adopted to define and compute the evolvement of a developing wave packet. The results indicate that there exists barotropic instability of spherical Rossby wave in the climatically-averaged flow field before the SCSSM onset. The instability is triggered by the westerly jet stream in the Southern Hemisphere, and the strongest instable perturbation lies to the south of the westerly jet stream. The peak of the developing spherical Rossby wave packet propagates from mid and high latitudes to low latitudes, though not crossing the equator, spurring the cumulus convection in the tropical zones. The eruption of the cumulus convection and its spread to monsoon regions help to speed up the adjustment of the general circulation and the SCSSM onset. It is concluded that elements that contribute to the SCSSM onset are on global scale, albeit the onset itself looks like a local phenomenon.展开更多
基金supported by the National Key Research Program of China [grant number 2016YFB0200805)the National Natural Science Foundation of China [grant number 41575089]
文摘Version 3.9 of WRF-ARW is run with a tropical belt configuration for a period from 2012 to 2016 in this study. The domain covers the entire tropics between 45°S and 45°N with a spatial resolution of about 45 km. In order to verify two radiation schemes and four cumulus convection schemes, eight experiments are performed with different combinations of physics parameterization schemes. The results show that eight experiments present reasonable spatial patterns of surface air temperature and precipitation in boreal summer, with the spatial correlation coefficient (COR) between simulated and observed temperature exceeding 0.95, and that between simulated and observed precipitation ranges from 0.65 to 0.82. The four experiments with the RRTMG radiation scheme show a better performance than the other four experiments with the CAM radiation scheme. In the four experiments with the RRTMG radiation scheme, the COR between simulated and observed surface air temperature is about 0.98, and that between simulated and observed precipitation ranges from 0.76 to 0.82. Comparatively, the two experiments using the new Tiedtke cumulus parameterization scheme can simulate better diurnal variation of precipitation in boreal summer than the other six experiments. In particular, for the diurnal cycle of precipitation over land and ocean, the experiment using the RRTMG radiation scheme and the new Tiedtke cumulus convection scheme shows that the peaks of precipitation rate appear at 0400 LST and 1600 LST, in agreement with observation.
文摘The diagnostic model of the cumulus convection proposed by Yanai et al. (1973) was applied to the atmosphere over the Tibetan Plateau, and used to estimate the vertical mass flux, entrainment and detrainment, excess temperature and moisture, liquid water content, and condensation and precipitation rates of highland cloud clusters. The results illustrated that in clouds over the Tibetan Plateau, the water vapor condensation rate, liquid water content, and efficiency of the rain generation process are less than those in the tropics (represented by the Marshall Islands region). Therefore, the condensational latent heat released over the Tibetan Plateau, overall, is much smaller than that in the tropics. The water vapor and liquid water detrainment from shallow nonprecipitating cumulus clouds, and their entrainment into deep cumulus clouds, serve as a growing mechanism for the deep precipitating cumulus towers over the Tibetan Plateau. It should be noted that there is a stronger detrainment of liquid water from cumulus clouds and a stronger re-evaporation rate in environment. The process of the condensation-detrainment-re-evaporation-cnlrainmcnt is repeatedly in progress. It would play an important role in maintaining of cumulus convection on the condition that the supply of moisture is not plentiful over the Tibetan Plateau.The analyses also showed that the cloud mass flux Mc over the Tibetan Plateau is less, and the large-scale average upward motion is much less than those over the Marshall Islands. Stronger compensating downward motion in the cloud environment over the Tibetan Plateau, responsible for the area's strong environmental heating rate Was revealed, and would link to the stability of the South Asian High in summer.
基金Supported by"National Key Program for Developing Basic Sciences"G1998040900the National Natural Science Foundation of China(No.49794030).
文摘By comparison of simulated cumulus convection processes in RegCM2,using the Kuo scheme, the Grell scheme and the mass flux scheme (MFS),it is found that the MFS can simulate the cumulus heating and moistening very well.A series of sensitivity tests show that the parameters for specifying the conversion coefficient from cloud droplets to raindrops,the turbulent entrainment and detrainment rates in updrafts anddowndrafts,and the intensity of thedowndrafts have different degrees of influence upon the cumulus convection.Therefore.it is quite important for cumulus parameterization scheme to define these parameters as accurately as possible.
基金jointly supported by the National Natural Science Foundation of China(41305102)the National Basic Research Program of China(2014CB441202,2013CB955803)
文摘A single-column model is constructed based on parameterizations inherited from the Finite-volume/Spectral Atmospheric Model F/SAMIL and tested in simulations of tropical convective systems. Two representative convection schemes are compared in terms of their performances on precipitation types, individual physical tendencies, and temperature and moisture fields. The main difference between the two selected schemes is in their representation of entraining/detraining process. The Tiedtke scheme assumes bulk entrainment, while the Zhang–Mc Farlane scheme parameterizes entrainment/detrainment rates under the spectrum concept. Large-scale forcing and verification data are taken from the GATE phase III field campaign, during which abundant convective events were observed. Given the same triggering function and closure assumption, results show that entrainment/detrainment representation remains the dominant factor on the simulation of cumulus mass flux and of temperature and moisture fields. By analyzing sources and sinks of heat and moisture, this study reveals how parameterization components compensate for each other and make model results insensitive to parameterization changes in certain fields, thus suggesting the need to treat parameterizations as systems rather than individual components.
基金supported jointly by the National Science Foundation of China under Grant No.40305010oversea outstanding young scientist project No.2002-1-2 of Chinese Academy of Sciences.
文摘A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rowntree (1989; 1990). This convection scheme uses a 'bulk' cloud model to present an ensemble of convective clouds, and aims to represent shallow, deep, and mid-level convection. At present, this convection scheme is employed in the NCC T63L20 model (National Climate Center, China Meteorological Administration). Simulation results with this scheme have revealed some deficiencies in the scheme, although to some extent, it improves the accuracy of the simulation. In order to alleviate the deficiencies and reflect the effect of cumulus convection in the actual atmosphere, the scheme is modified and improved. The improvements include (i) the full estimation of the effects of the large-scale convergence in the lower layer upon cumulus convection, (ii) the revision of the initial convective mass flux, and (iii) the regulation of convective-scale downdrafts. A comparison of the results obtained by using the original model and the modified one shows that the improvement and modification of the original convection scheme is successful in simulating the precipitation and general circulation field, because the modified scheme provides a good simulation of the main features of seasonal precipitation in China, and an analysis of the anomaly correlation coefficient between the simulation and the observations confirms the improved results.
基金This study was supportedjointly by the Chinese Academy of Sciences Key AspectsProgram for Knowledge Innovation Project(KZCX2-203)and the National Natural Science Foundation of China un-der Grant No.40035010.
文摘The NCC T63L20 model of the National Climate Center, China Meteorological Administration is employed to simulate the 1998 summer flood, which mainly occurred in the region of the Yangtze River and Northeast China. For this study, two kinds of cumulus convection parameterized schemes are employed in this model respectively. The simulations show that the Gregory parameterized scheme, which is still used in the United Kingdom Meteorological Office routine model, simulates more reasonable rainfall amount and distribution compared to the Kuo-type scheme. Moreover, the Gregory scheme better simulates the tendency of general circulation than the Kuo-type scheme. On the whole, the Gregory scheme provides a good simulation of the main features of the seasonal precipitation and general circulation in China, although the simulated result still exhibits some departures from the observations.
基金supported by the funding of the Key Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-328)the National Key Basic Research Program (2005CB422003)+1 种基金National Science Foundation Center of China (NSFC) (40871001)the US JPL Grant No. 1278492,NOAA Grant Nos NA07OAR4310226 and NA08OAR4310591
文摘This study investigates the capability of the dynamic downscaling method (DDM) in an East Asian climate study for June 1998 using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research non-hydrostatic Mesoscale Model (MM5).Sensitivity experiments show that MM5 results at upper atmospheric levels cannot match reanalyses data,but the results show consistent improvement in simulating moisture transport at low levels.The downscaling ability for precipitation is regionally dependent.During the monsoon season over the Yangtze River basin and the pre-monsoon season over North China,the DDM cannot match observed precipitation.Over Northwest China and the Tibetan Plateau (TP),where there is high topography,the DDM shows better performance than reanalyses.Simulated monsoon evolution processes over East Asia,however,are much closer to observational data than reanalyses.The convection scheme has a substantial impact on extreme rainfall over the Yangtze River basin and the pre-monsoon over North China,but only a marginal contribution for Northwest China and the TP.Land surface parameterizations affect the locations and pattern of rainfall bands.The 10-day re-initialization in this study shows some improvement in simulated precipitation over some sub-regions but with no obvious improvement in circulation.The setting of the location of lateral boundaries (LLB) westward improves performance of the DDM.Including the entire TP in the western model domain improves the DDM performance in simulating precipitation in most sub-regions.In addition,a seasonal simulation demonstrates that the DDM can also obtain consistent results,as in the June case,even when another two months consist of no strong climate/weather events.
文摘In terms of a baroclinic quasi-geostrophic waveufiltering technique in connection with a dimensionless parameter,n(z),of condensation-released latent heat that indicates the CISK mechanism,a model is established for describing tropical atmosphere CISK-Rossby waves alongside its analytical solution. Theoretical study shows that thereexists pronounced difference between Rossby waves, CISK-involving and classic, and the former can be used to interpret some aspects of the low--frequency oscillation in the tropical atmosphere.
基金Supported by"National Key Program for Developing Basic Sciences"G1998040900the National Natural Science Foundation of China(No.49794030).
文摘Based on the existing cumulus convective parameterization schemes,a mass flux scheme (MFS)for cumulus convective parameterization has been successfully developed by reference to the work of Chen et al.(1996).The MFS is a comprehensive scheme.In MFS,not only the importance of the large-scale moisture convergence is taken into account,but also it includes the cumulus updrafts and downdrafts,cumulus-induced subsidence in the environmental air. entrainment,detrainment and evaporation.The interaction between the cumulus and the environment is described by using a one-dimensional bulk model.At the same time the scheme includes the penetrative and shallow convections. The MFS has been successfully incorporated into the regional climate model RegCM2 developed by NCAR.The new model has been applied to simulate summer monsoon characteristics and their variations of heavy rainfall process in the Changjiang-Huaihe River Basins for three months from May to July 1991.The results show that the new model can successfully simulate this rainfall prolonged process.By comparising the model outputs of RegCM2.using the Kuo scheme and the MFS.it is found that the MFS is better in simulating the surface temperature,rainfall position and amount,and rainfall duration.
文摘An atmospheric general circulation model is used in a series of three experiments to simulate the intraseasonal oscillation in the tropical atmosphere.Analyses of the model daily data show that various physical variables,from sever- al different regions,exhibit fluctuations with a spectral peak between 30 and 60 days.This represents a 30—60 day oscillation in the tropical atmosphere and possesses several features which are consistent with observations.These in- clude a horizontal structure dominated by zonal wavenumber 1 and a vertical structure which is predominantly baroclinic. The effect of warm SST (sea surface temperature) anomalies on the 30—60 day oscillation in the tropical atmos- phere is also simulated by prescribing global SST as observed in 1983.This has the effect of weakening the oscillation while at the same time the vertical structure becomes less baroclinic. The importance of cumulus convection to the propagational characteristics of this oscillation is demonstrated by a comparison of results based on different parameterizations for convection.In one case,where the maximum convection over the Pacific is simulated to be too far east,the simulated 30—60 day oscillation shows evidence of westward propa- gation.In the second case,where the convection maximum is located near the observed position in the western Pacific, there is more clearly evidence of eastward propagation. Both results suggest that the location of maximum convection in the Pacific can have an important influence on the strength,structure and propagation of the 30—60 day oscillation.
基金Supported by the National Key Programme for Developing Basic Sciences (2007CB411800).
文摘By using the NCEP/NCAR reanalysis data from 1958 to 1997, we first looked into the atmospheric flow conditions in the one month immediately prior to the onset of the South China Sea summer monsoon (SCSSM) each year. A monthly-averaged zonal basic flow of 40-yr composite was then calculated. The stability of Rossby wave in the basic flow was studied based on the spherical barotropic vorticity equation. Furthermore, the spectral function expansion method was adopted to define and compute the evolvement of a developing wave packet. The results indicate that there exists barotropic instability of spherical Rossby wave in the climatically-averaged flow field before the SCSSM onset. The instability is triggered by the westerly jet stream in the Southern Hemisphere, and the strongest instable perturbation lies to the south of the westerly jet stream. The peak of the developing spherical Rossby wave packet propagates from mid and high latitudes to low latitudes, though not crossing the equator, spurring the cumulus convection in the tropical zones. The eruption of the cumulus convection and its spread to monsoon regions help to speed up the adjustment of the general circulation and the SCSSM onset. It is concluded that elements that contribute to the SCSSM onset are on global scale, albeit the onset itself looks like a local phenomenon.