If an uncut woven pile fabric is to be subjected to compressive load in use its compression resilience performance becomes very crucial.In order to optimize the extent of recovery in fabric thickness when the applied ...If an uncut woven pile fabric is to be subjected to compressive load in use its compression resilience performance becomes very crucial.In order to optimize the extent of recovery in fabric thickness when the applied force is removed,thirteen uncut woven pile fabric samples were woven and tested on KES-G5 Hand Type Compression Tester (small compress Hammer).The results show that the above parameters influence compression resilience property of the uncut woven pile fabrics,and the structural factors have a more pronounced effect as compared to effect of fibre and yarn type.展开更多
Seamless bra cup moulding is an important manufacturing technique for the apparel industry,and in particular,for bra production.Polyurethane(PU)foams and/or fabric-foam laminated sheets are moulded into a desirable cu...Seamless bra cup moulding is an important manufacturing technique for the apparel industry,and in particular,for bra production.Polyurethane(PU)foams and/or fabric-foam laminated sheets are moulded into a desirable cup shape in order to fit the three-dimensional(3D)breast contour.Such foam cups not only provide a wide range of designs combined with different levels of softness and support,but also reduce production costs with minimum cutting and sewing of seams.In this study,two selected PU foam and fabric materials typically used for bra cup moulding were examined.Their respective performance behaviour in relation to different moulding temperatures and time changes were recorded and analyzed.The results reveal that cup heights are greatly affected by the use of foam and/or fabric-foam laminated materials.High moulding temperatures and/or prolonged dwell time could be required when deforming laminated materials and setting large cup sizes.Nevertheless,cup height cannot be taken as the only criteria to determine the optimal moulding conditions,and this is especially the case for large cup sizes.The design of mould heads is a major factor that affects the dimension changes of foam cups.In this respect,to control the foam moulding process,it is suggested that bra manufacturers examine the fabric/foam material properties to determine the optimal moulding condition,and quantify the shape of foam cups to enhance the design and development process of aluminum mould heads.展开更多
Three-dimensional( 3 D) fabric composite is a newly developed sandwich structure,consisting of two identical parallel fabric decks woven integrally and mechanically together by means of vertical woven fabrics. In this...Three-dimensional( 3 D) fabric composite is a newly developed sandwich structure,consisting of two identical parallel fabric decks woven integrally and mechanically together by means of vertical woven fabrics. In this paper,six types of 3 D fabric sandwich composites were developed in terms of compressive and flexural properties as a function of pile height( 10, 20 and30 mm) and pile distance( 16, 24 and 32 mm) in pile structures. The mechanical characteristics and the damage modes of the 3 D fabric sandwich composites under compressive and flexural load conditions were investigated. Besides,the influence of pile height and pile distance on the 3 D fabric sandwich composites mechanical properties was analyzed. The results showed that the compressive properties decreased with the increase of the pile height and the pile distance. Flexural properties increased with the increase of pile height, while decreased with the increase of pile distance.展开更多
With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we...With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we designed three-dimensional woven spacer fabrics(3DWSFs)and 3DWSCs with the weft V-shape to improve the compression performance of traditional 3DWSFs.The effects of weft binding structures,V-pile densities,and V-shaped angle were investigated in this paper.It is found that the compression resistance of 3DWSFs with the weft V-shape is improved compared to that with the weft I-shape,the fabric height recovery rate is as high as 95.7%,and the average elastic recovery rate is 59.39%.When the interlayer pile yarn density is the same,the weft V-shaped and weft I-shaped 3DWSCs have similar flatwise pressure and edgewise pressure performance.The compression properties of the composite improve as the density of the V-pile yarns increases.The flatwise compression load decreases as the V-shaped angle decreases.When the V-shaped angle is 28°and 42°,the latitudinal V-shaped 3DWSCs perform exceptionally well in terms of anti-compression cushioning.The V-shaped weft binding method offers a novel approach to structural design of 3DWSCs.展开更多
文摘If an uncut woven pile fabric is to be subjected to compressive load in use its compression resilience performance becomes very crucial.In order to optimize the extent of recovery in fabric thickness when the applied force is removed,thirteen uncut woven pile fabric samples were woven and tested on KES-G5 Hand Type Compression Tester (small compress Hammer).The results show that the above parameters influence compression resilience property of the uncut woven pile fabrics,and the structural factors have a more pronounced effect as compared to effect of fibre and yarn type.
基金Research Grants Council of the Hong Kong Special Administrative Region,China(No.PolyU5317/06E)
文摘Seamless bra cup moulding is an important manufacturing technique for the apparel industry,and in particular,for bra production.Polyurethane(PU)foams and/or fabric-foam laminated sheets are moulded into a desirable cup shape in order to fit the three-dimensional(3D)breast contour.Such foam cups not only provide a wide range of designs combined with different levels of softness and support,but also reduce production costs with minimum cutting and sewing of seams.In this study,two selected PU foam and fabric materials typically used for bra cup moulding were examined.Their respective performance behaviour in relation to different moulding temperatures and time changes were recorded and analyzed.The results reveal that cup heights are greatly affected by the use of foam and/or fabric-foam laminated materials.High moulding temperatures and/or prolonged dwell time could be required when deforming laminated materials and setting large cup sizes.Nevertheless,cup height cannot be taken as the only criteria to determine the optimal moulding conditions,and this is especially the case for large cup sizes.The design of mould heads is a major factor that affects the dimension changes of foam cups.In this respect,to control the foam moulding process,it is suggested that bra manufacturers examine the fabric/foam material properties to determine the optimal moulding condition,and quantify the shape of foam cups to enhance the design and development process of aluminum mould heads.
基金National Key R&D Program of China(Nos.2016YFB0303104,2018YFC0810306)Jiangsu Overseas Visiting Scholar Program for University Prominent Younge Middle-aged Teachers and PresidentsSix Talent Peaks Project in Jiangsu Province,China(No.XCL-061)
文摘Three-dimensional( 3 D) fabric composite is a newly developed sandwich structure,consisting of two identical parallel fabric decks woven integrally and mechanically together by means of vertical woven fabrics. In this paper,six types of 3 D fabric sandwich composites were developed in terms of compressive and flexural properties as a function of pile height( 10, 20 and30 mm) and pile distance( 16, 24 and 32 mm) in pile structures. The mechanical characteristics and the damage modes of the 3 D fabric sandwich composites under compressive and flexural load conditions were investigated. Besides,the influence of pile height and pile distance on the 3 D fabric sandwich composites mechanical properties was analyzed. The results showed that the compressive properties decreased with the increase of the pile height and the pile distance. Flexural properties increased with the increase of pile height, while decreased with the increase of pile distance.
基金Fundamental Research Funds for the Central Universities,China(Nos.2232022D-11 and 22D128102/007)Jiangsu Transformation and Upgrading Funding Program for Industrial and Information Industry,ChinaShanghai Natural Science Foundation of Shanghai Municipal Science and Technology Commission,China(No.20ZR1401600)。
文摘With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we designed three-dimensional woven spacer fabrics(3DWSFs)and 3DWSCs with the weft V-shape to improve the compression performance of traditional 3DWSFs.The effects of weft binding structures,V-pile densities,and V-shaped angle were investigated in this paper.It is found that the compression resistance of 3DWSFs with the weft V-shape is improved compared to that with the weft I-shape,the fabric height recovery rate is as high as 95.7%,and the average elastic recovery rate is 59.39%.When the interlayer pile yarn density is the same,the weft V-shaped and weft I-shaped 3DWSCs have similar flatwise pressure and edgewise pressure performance.The compression properties of the composite improve as the density of the V-pile yarns increases.The flatwise compression load decreases as the V-shaped angle decreases.When the V-shaped angle is 28°and 42°,the latitudinal V-shaped 3DWSCs perform exceptionally well in terms of anti-compression cushioning.The V-shaped weft binding method offers a novel approach to structural design of 3DWSCs.