Two carbonation approaches are considered for studying the effects on the hardening mechanisms of slurries made of 100 wt%electric arc furnace steel slag (EAF) slag or 80 wt%EAF slag incorporating 20 wt% of Portland c...Two carbonation approaches are considered for studying the effects on the hardening mechanisms of slurries made of 100 wt%electric arc furnace steel slag (EAF) slag or 80 wt%EAF slag incorporating 20 wt% of Portland cement,which are applied during the hot-stage pretreatment with simulated gas for raw steel slag or the accelerated carbonation curing of slurry.The mechanical strengths,carbonate products,microstructures and CO_(2) uptakes were quantitatively investigated.Results manifest that accelerated carbonation curing increases the compressive strengths of steel slag slurry,from 17.1 MPa (binder of 80 wt% EAF and 20 wt%cement under standard moisture curing) to 36.0 MPa (binder of 80 wt%EAF and 20 wt%cement under accelerated carbonation curing),with a CO_(2) uptake of 52%.In contrast,hot-stage carbonation applied during the pretreatment of steel slag increases the compressive strengths to 43.7 MPa (binder of 80 wt%carbonated EAF and 20 wt%cement under accelerated carbonation curing),with a CO_(2) uptake of 67%.Hotstage carbonation of steel slag is found for particle agglomeration,minerals remodeling and calcite formed,thus causing an activated steel slag with a dense structure and more active components.Accelerated carbonation curing of steel slag slurry paste results in the newly formed amorphous CaCO_(3),calcite crystalline and silica gels that covered the pores of the matrix,facilitating microstructure densification and strength improvement.Adopting the combinative methods of the hot-stage CO_(2) pretreatment and accelerated carbonation curing creates a promising high-volume steel slag-based binder with high strengths and CO_(2) storage.展开更多
Four mineral admixture concrete specimens werefabricated to study the negative effect improvements ofaccelerated curing on the chloride penetration resistance ofordinary concrete. After reaching different initial stre...Four mineral admixture concrete specimens werefabricated to study the negative effect improvements ofaccelerated curing on the chloride penetration resistance ofordinary concrete. After reaching different initial strengths, the specimens were placed in 40, 60, or 80 t water tanks foraccelerated curing. The Coulomb values of the specimens weemeasured with ASTM C1202 experiment at 28, 100, 200, ad300 d. Partial specimens were also selected for rapid chlorideion migration coefficient and mercury intrusion porosimetryexperiments. The experimental results show that theaccelerated curing for ordinary concrete linealy deterioratesthe chloride penetration resistance, whereas the incorporationof mineral admixtures improves the concrete microscopic pore-structures and negative effects. An upper temperature limit of60 t of the accelerated curing is suitable for obtainingsuperior chloride penetration resistance for the mineraladmixture concrete. Pre-curing at a normal temperature of 20t is beneficial for improving the negative effect, which isalso aieviated with increasing testing age as a result of thesuccessive hydration of binder materials in concrete.展开更多
In order to lower the imidization temperature of polyamic acids(PAA), the catalytic activities of the curing agents p-hydroxybenzoic acid(PHA), quinoline(QL), benzimidazole(BI), benzotriazole(BTA), triethyla...In order to lower the imidization temperature of polyamic acids(PAA), the catalytic activities of the curing agents p-hydroxybenzoic acid(PHA), quinoline(QL), benzimidazole(BI), benzotriazole(BTA), triethylamine(Et_3N) and 1, 8-diazabicyclo [5.4.0]undec-7-ene(DBU) were investigated in the process of thermal imidization of PAA. In addition, the effect of these various curing agents on the thermal stabilities and mechanical properties of the resultant polyimide(PI) films was determined. Quinoline was found to be an effective curing accelerator in the use of two-step method for synthesizing PI. Due to its moderate base strength, low steric crowding effect and moderate boiling point, quinoline could not only accelerate PAA to achieve imidization completely at 180 ℃, but also maintain the mechanical properties and thermal stability of the ordinary PI film. Any residual quinoline could be removed from PI films by heating at 250 ℃ for 4 h.展开更多
One of the challenges of promoting accelerated carbonation curing(ACC)of concrete as a carbon sequestration strategy is ensuring that carbonation will not deteriorate mechanical strength.This study examined the mechan...One of the challenges of promoting accelerated carbonation curing(ACC)of concrete as a carbon sequestration strategy is ensuring that carbonation will not deteriorate mechanical strength.This study examined the mechanical strength,water sorptivity and carbonation efficiency of ten types of mortar containing dry or pre-soaked biochar subjected to internal and/or external carbonation.The results obtained enabled a typology of ACC to be proposed,in which the carbon dioxide absorption of mortar containing various types of CO_(2)-dosed biochar ranged between 0.022%and 0.068%per unit dosage hour.In particular,the mortar containing dry biochar dosed with carbon dioxide was the top candidate for concurrently increasing both compressive strength(54.9 MPa)and carbon dioxide absorption(0.055%per unit dosage hour).Mortar containing pre-soaked biochar dosed with carbon dioxide was identified as a strategy that achieved the highest carbonation efficiency(0.068%per unit dosage hour),but it also reduced compressive strength(45.1 MPa).Collectively,the proposed typology offers a useful overview of the different ways by which biochar can be used to tune ACC in mortar,according to any technical constraints and/or intended functions of the carbonated concrete components.展开更多
基金Funded by the National Key Research and Development Program of China-Intergovernmental International Cooperation in Scientific and Technological Innovation MOST,China (No.2018YFE0107300)。
文摘Two carbonation approaches are considered for studying the effects on the hardening mechanisms of slurries made of 100 wt%electric arc furnace steel slag (EAF) slag or 80 wt%EAF slag incorporating 20 wt% of Portland cement,which are applied during the hot-stage pretreatment with simulated gas for raw steel slag or the accelerated carbonation curing of slurry.The mechanical strengths,carbonate products,microstructures and CO_(2) uptakes were quantitatively investigated.Results manifest that accelerated carbonation curing increases the compressive strengths of steel slag slurry,from 17.1 MPa (binder of 80 wt% EAF and 20 wt%cement under standard moisture curing) to 36.0 MPa (binder of 80 wt%EAF and 20 wt%cement under accelerated carbonation curing),with a CO_(2) uptake of 52%.In contrast,hot-stage carbonation applied during the pretreatment of steel slag increases the compressive strengths to 43.7 MPa (binder of 80 wt%carbonated EAF and 20 wt%cement under accelerated carbonation curing),with a CO_(2) uptake of 67%.Hotstage carbonation of steel slag is found for particle agglomeration,minerals remodeling and calcite formed,thus causing an activated steel slag with a dense structure and more active components.Accelerated carbonation curing of steel slag slurry paste results in the newly formed amorphous CaCO_(3),calcite crystalline and silica gels that covered the pores of the matrix,facilitating microstructure densification and strength improvement.Adopting the combinative methods of the hot-stage CO_(2) pretreatment and accelerated carbonation curing creates a promising high-volume steel slag-based binder with high strengths and CO_(2) storage.
基金The National Natural Science Foundation of China(No.51178455)the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2015133)
文摘Four mineral admixture concrete specimens werefabricated to study the negative effect improvements ofaccelerated curing on the chloride penetration resistance ofordinary concrete. After reaching different initial strengths, the specimens were placed in 40, 60, or 80 t water tanks foraccelerated curing. The Coulomb values of the specimens weemeasured with ASTM C1202 experiment at 28, 100, 200, ad300 d. Partial specimens were also selected for rapid chlorideion migration coefficient and mercury intrusion porosimetryexperiments. The experimental results show that theaccelerated curing for ordinary concrete linealy deterioratesthe chloride penetration resistance, whereas the incorporationof mineral admixtures improves the concrete microscopic pore-structures and negative effects. An upper temperature limit of60 t of the accelerated curing is suitable for obtainingsuperior chloride penetration resistance for the mineraladmixture concrete. Pre-curing at a normal temperature of 20t is beneficial for improving the negative effect, which isalso aieviated with increasing testing age as a result of thesuccessive hydration of binder materials in concrete.
文摘In order to lower the imidization temperature of polyamic acids(PAA), the catalytic activities of the curing agents p-hydroxybenzoic acid(PHA), quinoline(QL), benzimidazole(BI), benzotriazole(BTA), triethylamine(Et_3N) and 1, 8-diazabicyclo [5.4.0]undec-7-ene(DBU) were investigated in the process of thermal imidization of PAA. In addition, the effect of these various curing agents on the thermal stabilities and mechanical properties of the resultant polyimide(PI) films was determined. Quinoline was found to be an effective curing accelerator in the use of two-step method for synthesizing PI. Due to its moderate base strength, low steric crowding effect and moderate boiling point, quinoline could not only accelerate PAA to achieve imidization completely at 180 ℃, but also maintain the mechanical properties and thermal stability of the ordinary PI film. Any residual quinoline could be removed from PI films by heating at 250 ℃ for 4 h.
基金Department of the Built Environment and College of Design and Engineering(E-471-00-0009-02).
文摘One of the challenges of promoting accelerated carbonation curing(ACC)of concrete as a carbon sequestration strategy is ensuring that carbonation will not deteriorate mechanical strength.This study examined the mechanical strength,water sorptivity and carbonation efficiency of ten types of mortar containing dry or pre-soaked biochar subjected to internal and/or external carbonation.The results obtained enabled a typology of ACC to be proposed,in which the carbon dioxide absorption of mortar containing various types of CO_(2)-dosed biochar ranged between 0.022%and 0.068%per unit dosage hour.In particular,the mortar containing dry biochar dosed with carbon dioxide was the top candidate for concurrently increasing both compressive strength(54.9 MPa)and carbon dioxide absorption(0.055%per unit dosage hour).Mortar containing pre-soaked biochar dosed with carbon dioxide was identified as a strategy that achieved the highest carbonation efficiency(0.068%per unit dosage hour),but it also reduced compressive strength(45.1 MPa).Collectively,the proposed typology offers a useful overview of the different ways by which biochar can be used to tune ACC in mortar,according to any technical constraints and/or intended functions of the carbonated concrete components.