The effects of different curing systems on the properties of high volume fine mineral powder RPC (reactive powder concrete) and the appearances of hydrates were studied. The experimental results show that dry-heatin...The effects of different curing systems on the properties of high volume fine mineral powder RPC (reactive powder concrete) and the appearances of hydrates were studied. The experimental results show that dry-heating curing promotes the development of pozzolanic reactivity of fine mineral powder; due to low cement content, 0.20 water-bind ratio and high reactive fine mineral powder content, the strength of RPC increases by around 200% after steam curing and subsequent dry-heating curing. Scanning electron microscopy and energy spectrum diagram showed that: after the high volume fine mineral powder RPC with 0.16 water-bind ratio underwent steam curing and dry-heating curing, there was no significant change in the appearance of hydrates; after the RPC with 0.20 water-bind ratio, the cement content of 150 kg/m3 and more steel slag powder underwent dry-heating curing, there was a certain change in the appearance of C-S-H, the structure of gel was more compact and was uniformly distributed, and the Ca/Si of C-S-H gel decreased from 1.41 to around 1.20.展开更多
The crystal structure and morphology of the mineralization products were studied by scanning electron microscopy(SEM)and X-ray diffraction(XRD),and the thermal properties were studied by thermogravimetric-differential...The crystal structure and morphology of the mineralization products were studied by scanning electron microscopy(SEM)and X-ray diffraction(XRD),and the thermal properties were studied by thermogravimetric-differential scanning calorimetry(DSC)analysis.The changes of microorganism quantity and enzyme activity in pore solution with time were measured.The experimental results show that microorganism quantity and enzyme activity in pore solution reach the maximum at 50-60 h,mineralization curing begins at this time,the strength of microbial mineralized steel slag reaches the maximum.This study provides a good selection basis for selecting the optimum mineralization system for the production of microbial mineralized steel slag products.Bacterial mineralization can accelerate the rate of carbon sequestration in the mineralization process.The compressive strength of steel slag with 1.5% bacterial can reach up to 55.6 MPa.The microstructure and thermal properties of calcium carbonate precipitate induced by the enzymes of bacillus subtilis differs from the chemical precipitation in pore solution of steel slag.Through the analysis of the mineralized products of steel slag,the reaction rate of free calcium oxide and free magnesium oxide in steel slag after the addition of microorganisms is significantly increased,which improves the stability of steel slag as cementitious material.Meanwhile,the production of calcium carbonate,the main mineralized product,is significantly increased.展开更多
High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-ea...High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage.展开更多
By using diphenyliodonium salts with different counterions as photo acid generators (PAGs), the effect of acidity on ring-opening polymerization of epoxy monomers and polycondensation of polyol with hexamethoxymethyl ...By using diphenyliodonium salts with different counterions as photo acid generators (PAGs), the effect of acidity on ring-opening polymerization of epoxy monomers and polycondensation of polyol with hexamethoxymethyl melamine (HMMM) was studied. The result shows that the rate of ring-opening polymerization is evidently dependent on the acidity of the acid and strong photo-generated acid is required. However, there is a leveling effect in the polycondensation system; if the photo-generated acid is stronger than protonated HMMM, the acidity does not obviously affect the polycondensation rate.展开更多
To address the energy shortage and meet the requirements of environmental protection policies,the feasibility of premixed fuel 1(natural gas(NG),syngas,and hydrogen)and premixed fuel 2(NG and hydrogen)in the tobacco c...To address the energy shortage and meet the requirements of environmental protection policies,the feasibility of premixed fuel 1(natural gas(NG),syngas,and hydrogen)and premixed fuel 2(NG and hydrogen)in the tobacco curing system was studied.First,according to the law of conservation of energy and mass,a tobacco leaf curing system model was established.Then,the interchangeability index of the premixed fuels was analyzed,and their volume ratios were obtained.Finally,a numerical simulation analysis of the premixed fuel combustion was conducted based on the indicators of emission,temperature,and economy.On this basis,the comprehensive performance indexes of the system composed of different premixed fuels were evaluated.The results obtained indicate that with the increase in the hydrogen volume ratio in premixed fuel 1,NO_(X) emissions will gradually increase.Moreover,with the increase in the hydrogen volume ratio in premixed fuel 2,CO emissions will gradually decrease.Because premixed fuel 2 contains more hydrogen than premixed fuel 1,CO emissions are reduced by 9.39%and 16.72%as compared with the NG system when the volume ratio of NG to hydrogen is 95∶5 and 90∶10,but the NO emissions of the latter are beyond the acceptable range.Finally,the overall performance is good when the volume ratio of NG to hydrogen is 95∶5,and the volume ratio of NG to syngas to hydrogen is 90∶5∶5.展开更多
The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the i...The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.展开更多
The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synth...The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.展开更多
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using ...Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.展开更多
Shrinkage-induced cracking is a common issue in concrete structures,where the formation of cracks not only affects the aesthetic appearance of concrete but also potentially reduces its durability and strength.In this ...Shrinkage-induced cracking is a common issue in concrete structures,where the formation of cracks not only affects the aesthetic appearance of concrete but also potentially reduces its durability and strength.In this study,the effect of ceramsite sand addition on the properties of a ternary system of cement-ground granulated blast furnace slag(GGBFS)-phosphogypsum(PG)is investigated.In particular,the fluidity,rheology,hydration heat,compressive strength,autogenous shrinkage,and drying shrinkage of the considered mortar specimens are analyzed.The results indicate that an increase in PG content leads to a decrease in fluidity,higher viscosity,lower exothermic peak,and lower compressive strength.However,the shrinkage of the mortar specimens is effectively compensated.The incorporation of internal curing water from ceramsite sand improves fluidity,decreases both yield stress and viscosity,enhances the degree of hydration,and induces mortar expansion.However,the inferior mechanical properties of the ceramsite sand generally produce a decrease in the compressive strength.展开更多
[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injecti...[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injection and vacuum tumbling curing.The effects of the two curing processes on the production rate,curing absorption rate,water content,soluble protein content,amino acid nitrogen content,texture characteristics and microstructure of the product were compared.[Results]Compared with static curing,the production rate of marinated beef increased by 10%,the curing absorption rate increased by 28%,the texture and microstructure were improved,and the water content increased,while the soluble protein content decreased.As a result,the sensory score was higher.There was no significant difference in the content of amino acid nitrogen,but it decreased compared with raw meat.To sum up,injection and vacuum tumbling curing is more conducive to the processing of marinated beef.[Conclusions]This study provides a theoretical basis for the industrial production of marinated beef,and lays a foundation for in-depth exploration of injection and vacuum tumbling curing technique of marinated beef.展开更多
By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual...By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.展开更多
This paper examines the application of polyurethane curing technology in the construction of railway track beds,with a specific focus on its implementation in China’s rapidly developing railway infrastructure.The stu...This paper examines the application of polyurethane curing technology in the construction of railway track beds,with a specific focus on its implementation in China’s rapidly developing railway infrastructure.The study begins by identifying the limitations of traditional ballasted track beds,especially under the demands of high-speed and heavyload railways.It then methodically analyzes the advantages of polyurethane-cured track beds,highlighting their improved mechanical properties,including enhanced stability and durability.The paper further explores the benefits of transitioning to prefabricated polyurethane track beds,emphasizing significant cost reductions,better construction quality,and enhanced maintainability.Through a detailed review of experimental data and practical applications,the paper demonstrates the efficacy of polyurethane track beds in various railway settings.A critical part of the research involves optimizing the structural parameters of polyurethane track beds to achieve the best balance of mechanical and damping properties.The conclusion of the paper underscores the potential of polyurethane curing technology as a transformative approach to railway track bed construction,offering a solution to the challenges posed by traditional methods and aligning with the evolving needs of modern railways.展开更多
Some people,mainly in the West,were taken by surprise when six Chinese warships were seen near the Red Sea in October 2023 amid the conflict in Gaza.Some Western media and politicians tried to frame China’s mission a...Some people,mainly in the West,were taken by surprise when six Chinese warships were seen near the Red Sea in October 2023 amid the conflict in Gaza.Some Western media and politicians tried to frame China’s mission as an escalatory move in the Middle East.展开更多
National food security is the backbone of any economy,and achieving food security is essential for the prosperity of a nation.During my study in China at the Institute of South-South Cooperation and Development,Peking...National food security is the backbone of any economy,and achieving food security is essential for the prosperity of a nation.During my study in China at the Institute of South-South Cooperation and Development,Peking University,from September 2022 to July 2023,I leant how China has managed to achieve food security despite its large population of around 1.4 billion and numerous other challenges by means of strategic planning,e"ective policy execution,technological advancement and global collaboration.展开更多
Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hyd...Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.展开更多
The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitiou...The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology.展开更多
In order to explore the internal curing mechanism of sepiolite in cement-based materials,the effects of sepiolite on the water consumption of standard consistency,setting time,viscosity,strength,pore structure charact...In order to explore the internal curing mechanism of sepiolite in cement-based materials,the effects of sepiolite on the water consumption of standard consistency,setting time,viscosity,strength,pore structure characteristics,micro-hardness characteristics and two-dimensional surface characteristics of cement paste were studied,respectively.The experimental results show that the water consumption of standard consistency increases linearly with the increase of sepiolite content.The setting time and viscosity are also lengthened and increased with the addition of sepiolite,respectively.When the content of sepiolite exceeds 5%,the strength of the specimen increases significantly.The BET results show that the pore structure of the interfacial transition zone(ITZ)in hardened cement paste(HCP)with sepiolite is optimized after curing for28 d and its pore volume content with below 10 nm is decreased,especially for the specimen with a lower watercement ratio.The characteristics of microhardness and strength of specimens have the same law.Backscattered electron image(BSE-IA)shows that the ITZ of the specimen with sepiolite is denser and the unhydrated cement particles are less than the reference specimen.展开更多
With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environmen...With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.展开更多
An octa-functional acrylate of C-tetramethyl calix[4]resorcinarene(CMC-4-RA) was facilely synthesized and characterized with ^1H NMR, ^13C NMR and FTIR spectroscopy. The CMC-4-RA was added to a thiol-acrylate system...An octa-functional acrylate of C-tetramethyl calix[4]resorcinarene(CMC-4-RA) was facilely synthesized and characterized with ^1H NMR, ^13C NMR and FTIR spectroscopy. The CMC-4-RA was added to a thiol-acrylate system with different mass ratios, and exposed to a middle pressure mercury lamp. The maximum photopolymerization rate and final vinyl group conversion in the cured film increased greatly along with CMC-4-RA addition that was monitored with Photo-DSC. The tensile strength and pendulum hardness were improved significantly after the addition of CMC-4-RA. With increasing the content of CMC-4-RA to 60%(mass fraction), the glass transition temperature increased from 34.2 ℃ to 84.1 ℃; the cross-link density was calculated to be increased from 23.83 mmol/cm^3 to 82.40 mmol/cm^3 according to dynamic mechanical thermal analysis; the thermostability was greatly improved.展开更多
基金Funded by the Science and Technology Foundation of Beijing Municipal Education Commission (KM200410016004)
文摘The effects of different curing systems on the properties of high volume fine mineral powder RPC (reactive powder concrete) and the appearances of hydrates were studied. The experimental results show that dry-heating curing promotes the development of pozzolanic reactivity of fine mineral powder; due to low cement content, 0.20 water-bind ratio and high reactive fine mineral powder content, the strength of RPC increases by around 200% after steam curing and subsequent dry-heating curing. Scanning electron microscopy and energy spectrum diagram showed that: after the high volume fine mineral powder RPC with 0.16 water-bind ratio underwent steam curing and dry-heating curing, there was no significant change in the appearance of hydrates; after the RPC with 0.20 water-bind ratio, the cement content of 150 kg/m3 and more steel slag powder underwent dry-heating curing, there was a certain change in the appearance of C-S-H, the structure of gel was more compact and was uniformly distributed, and the Ca/Si of C-S-H gel decreased from 1.41 to around 1.20.
基金Funded by the National Natural Science Foundation of China(No.51972047)。
文摘The crystal structure and morphology of the mineralization products were studied by scanning electron microscopy(SEM)and X-ray diffraction(XRD),and the thermal properties were studied by thermogravimetric-differential scanning calorimetry(DSC)analysis.The changes of microorganism quantity and enzyme activity in pore solution with time were measured.The experimental results show that microorganism quantity and enzyme activity in pore solution reach the maximum at 50-60 h,mineralization curing begins at this time,the strength of microbial mineralized steel slag reaches the maximum.This study provides a good selection basis for selecting the optimum mineralization system for the production of microbial mineralized steel slag products.Bacterial mineralization can accelerate the rate of carbon sequestration in the mineralization process.The compressive strength of steel slag with 1.5% bacterial can reach up to 55.6 MPa.The microstructure and thermal properties of calcium carbonate precipitate induced by the enzymes of bacillus subtilis differs from the chemical precipitation in pore solution of steel slag.Through the analysis of the mineralized products of steel slag,the reaction rate of free calcium oxide and free magnesium oxide in steel slag after the addition of microorganisms is significantly increased,which improves the stability of steel slag as cementitious material.Meanwhile,the production of calcium carbonate,the main mineralized product,is significantly increased.
基金National Natural Science Foundations of China(Nos.51478120,U1305245)
文摘High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage.
基金This project was supported by the National Natural Science Foundation of China(59633110 and 59773007)
文摘By using diphenyliodonium salts with different counterions as photo acid generators (PAGs), the effect of acidity on ring-opening polymerization of epoxy monomers and polycondensation of polyol with hexamethoxymethyl melamine (HMMM) was studied. The result shows that the rate of ring-opening polymerization is evidently dependent on the acidity of the acid and strong photo-generated acid is required. However, there is a leveling effect in the polycondensation system; if the photo-generated acid is stronger than protonated HMMM, the acidity does not obviously affect the polycondensation rate.
基金National Key Research and Development Program of China(No.2019YFE0100100-08).
文摘To address the energy shortage and meet the requirements of environmental protection policies,the feasibility of premixed fuel 1(natural gas(NG),syngas,and hydrogen)and premixed fuel 2(NG and hydrogen)in the tobacco curing system was studied.First,according to the law of conservation of energy and mass,a tobacco leaf curing system model was established.Then,the interchangeability index of the premixed fuels was analyzed,and their volume ratios were obtained.Finally,a numerical simulation analysis of the premixed fuel combustion was conducted based on the indicators of emission,temperature,and economy.On this basis,the comprehensive performance indexes of the system composed of different premixed fuels were evaluated.The results obtained indicate that with the increase in the hydrogen volume ratio in premixed fuel 1,NO_(X) emissions will gradually increase.Moreover,with the increase in the hydrogen volume ratio in premixed fuel 2,CO emissions will gradually decrease.Because premixed fuel 2 contains more hydrogen than premixed fuel 1,CO emissions are reduced by 9.39%and 16.72%as compared with the NG system when the volume ratio of NG to hydrogen is 95∶5 and 90∶10,but the NO emissions of the latter are beyond the acceptable range.Finally,the overall performance is good when the volume ratio of NG to hydrogen is 95∶5,and the volume ratio of NG to syngas to hydrogen is 90∶5∶5.
基金Projects(52175373,52005516)supported by the National Natural Science Foundation of ChinaProject(2018YFA0702800)supported by the National Key Basic Research Program,ChinaProject(ZZYJKT2021-03)supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,China。
文摘The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.
基金Funded by the National Natural Science Foundation of China(No.21865017)。
文摘The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金Funded by the National Key Research and Development Program of China (No.2019YFC1906202)the Guangxi Key Research and Development Plan (Nos.Guike AA18242007-3, Guike AB19259008, and Guike AB20297014)。
文摘Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.
基金funded by the China Railway Major Bridge Engineering Group Co.,Ltd.,Project(2023-48-Key Project).
文摘Shrinkage-induced cracking is a common issue in concrete structures,where the formation of cracks not only affects the aesthetic appearance of concrete but also potentially reduces its durability and strength.In this study,the effect of ceramsite sand addition on the properties of a ternary system of cement-ground granulated blast furnace slag(GGBFS)-phosphogypsum(PG)is investigated.In particular,the fluidity,rheology,hydration heat,compressive strength,autogenous shrinkage,and drying shrinkage of the considered mortar specimens are analyzed.The results indicate that an increase in PG content leads to a decrease in fluidity,higher viscosity,lower exothermic peak,and lower compressive strength.However,the shrinkage of the mortar specimens is effectively compensated.The incorporation of internal curing water from ceramsite sand improves fluidity,decreases both yield stress and viscosity,enhances the degree of hydration,and induces mortar expansion.However,the inferior mechanical properties of the ceramsite sand generally produce a decrease in the compressive strength.
文摘[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injection and vacuum tumbling curing.The effects of the two curing processes on the production rate,curing absorption rate,water content,soluble protein content,amino acid nitrogen content,texture characteristics and microstructure of the product were compared.[Results]Compared with static curing,the production rate of marinated beef increased by 10%,the curing absorption rate increased by 28%,the texture and microstructure were improved,and the water content increased,while the soluble protein content decreased.As a result,the sensory score was higher.There was no significant difference in the content of amino acid nitrogen,but it decreased compared with raw meat.To sum up,injection and vacuum tumbling curing is more conducive to the processing of marinated beef.[Conclusions]This study provides a theoretical basis for the industrial production of marinated beef,and lays a foundation for in-depth exploration of injection and vacuum tumbling curing technique of marinated beef.
文摘By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.
文摘This paper examines the application of polyurethane curing technology in the construction of railway track beds,with a specific focus on its implementation in China’s rapidly developing railway infrastructure.The study begins by identifying the limitations of traditional ballasted track beds,especially under the demands of high-speed and heavyload railways.It then methodically analyzes the advantages of polyurethane-cured track beds,highlighting their improved mechanical properties,including enhanced stability and durability.The paper further explores the benefits of transitioning to prefabricated polyurethane track beds,emphasizing significant cost reductions,better construction quality,and enhanced maintainability.Through a detailed review of experimental data and practical applications,the paper demonstrates the efficacy of polyurethane track beds in various railway settings.A critical part of the research involves optimizing the structural parameters of polyurethane track beds to achieve the best balance of mechanical and damping properties.The conclusion of the paper underscores the potential of polyurethane curing technology as a transformative approach to railway track bed construction,offering a solution to the challenges posed by traditional methods and aligning with the evolving needs of modern railways.
文摘Some people,mainly in the West,were taken by surprise when six Chinese warships were seen near the Red Sea in October 2023 amid the conflict in Gaza.Some Western media and politicians tried to frame China’s mission as an escalatory move in the Middle East.
文摘National food security is the backbone of any economy,and achieving food security is essential for the prosperity of a nation.During my study in China at the Institute of South-South Cooperation and Development,Peking University,from September 2022 to July 2023,I leant how China has managed to achieve food security despite its large population of around 1.4 billion and numerous other challenges by means of strategic planning,e"ective policy execution,technological advancement and global collaboration.
基金Funded by the National Natural Science Foundation of China(Nos.51132010 and 51272222)the Programs for Science and Technology Development of Yantai City,Shandong Province,China(No.2012ZH249)
文摘Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.
基金the Natural Sciences and Engineering Research Council of Canada (NSERC)Lakehead University for their financial support。
文摘The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology.
基金Funded by the Natural Science Foundation of China(No.51408380)the Science and Technology Plan of He Bei Province(No.E2021210033)the Scientific and Technological Development Funds of the Central Government Shall Guide Local(No.216Z3801G)。
文摘In order to explore the internal curing mechanism of sepiolite in cement-based materials,the effects of sepiolite on the water consumption of standard consistency,setting time,viscosity,strength,pore structure characteristics,micro-hardness characteristics and two-dimensional surface characteristics of cement paste were studied,respectively.The experimental results show that the water consumption of standard consistency increases linearly with the increase of sepiolite content.The setting time and viscosity are also lengthened and increased with the addition of sepiolite,respectively.When the content of sepiolite exceeds 5%,the strength of the specimen increases significantly.The BET results show that the pore structure of the interfacial transition zone(ITZ)in hardened cement paste(HCP)with sepiolite is optimized after curing for28 d and its pore volume content with below 10 nm is decreased,especially for the specimen with a lower watercement ratio.The characteristics of microhardness and strength of specimens have the same law.Backscattered electron image(BSE-IA)shows that the ITZ of the specimen with sepiolite is denser and the unhydrated cement particles are less than the reference specimen.
基金This research was funded by the National Natural Science Foundation of China(52078068)Practice Innovation Program of Jiangsu Province(KYCX22_3082).
文摘With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.
基金Supported by the National Natural Science Foundation of China(No.50233030)Granted by China NKBRSF Project (No.2001CB409600)
文摘An octa-functional acrylate of C-tetramethyl calix[4]resorcinarene(CMC-4-RA) was facilely synthesized and characterized with ^1H NMR, ^13C NMR and FTIR spectroscopy. The CMC-4-RA was added to a thiol-acrylate system with different mass ratios, and exposed to a middle pressure mercury lamp. The maximum photopolymerization rate and final vinyl group conversion in the cured film increased greatly along with CMC-4-RA addition that was monitored with Photo-DSC. The tensile strength and pendulum hardness were improved significantly after the addition of CMC-4-RA. With increasing the content of CMC-4-RA to 60%(mass fraction), the glass transition temperature increased from 34.2 ℃ to 84.1 ℃; the cross-link density was calculated to be increased from 23.83 mmol/cm^3 to 82.40 mmol/cm^3 according to dynamic mechanical thermal analysis; the thermostability was greatly improved.