In this paper we review a number of auxiliary space based preconditioners for the second order definite and semi-definite Maxwell problems discretized with the lowest order Nedelec finite elements. We discuss the para...In this paper we review a number of auxiliary space based preconditioners for the second order definite and semi-definite Maxwell problems discretized with the lowest order Nedelec finite elements. We discuss the parallel implementation of the most promising of these methods, the ones derived from the recent Hiptmair-Xu (HX) auxiliary space decomposition [Hiptmair and Xu, SIAM J. Numer. Anal., 45 (2007), pp. 2483-2509]. An extensive set of numerical experiments demonstrate the scalability of our implementation on large-scale H(curl) problems.展开更多
In this paper, we present a discontinuous Galerkin (DG) method based on the N@d@lec finite element space for solving a fourth-order curl equation arising from a magnetohy- drodynamics model on a 3-dimensional bounde...In this paper, we present a discontinuous Galerkin (DG) method based on the N@d@lec finite element space for solving a fourth-order curl equation arising from a magnetohy- drodynamics model on a 3-dimensional bounded Lipschitz polyhedron. We show that the method has an optimal error estimate for a model problem involving a fourth-order curl operator. Furthermore, some numerical results in 2 dimensions are presented to verify the theoretical results.展开更多
基金This work performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.UCRL-JRNL-237306
文摘In this paper we review a number of auxiliary space based preconditioners for the second order definite and semi-definite Maxwell problems discretized with the lowest order Nedelec finite elements. We discuss the parallel implementation of the most promising of these methods, the ones derived from the recent Hiptmair-Xu (HX) auxiliary space decomposition [Hiptmair and Xu, SIAM J. Numer. Anal., 45 (2007), pp. 2483-2509]. An extensive set of numerical experiments demonstrate the scalability of our implementation on large-scale H(curl) problems.
文摘In this paper, we present a discontinuous Galerkin (DG) method based on the N@d@lec finite element space for solving a fourth-order curl equation arising from a magnetohy- drodynamics model on a 3-dimensional bounded Lipschitz polyhedron. We show that the method has an optimal error estimate for a model problem involving a fourth-order curl operator. Furthermore, some numerical results in 2 dimensions are presented to verify the theoretical results.