Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by ...Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
A new type of high power LED drivers is proposed by adopting an improved two-stages non-isolated configuration. In order to improve power factor and achieve accurate average current control under universal input volta...A new type of high power LED drivers is proposed by adopting an improved two-stages non-isolated configuration. In order to improve power factor and achieve accurate average current control under universal input voltages ranging from 100 Vrms to 240 Vrms, the power factor correction and average current mode control methods operating in continuous current conduction mode are designed and implemented. With the LUMILEDS emitter type LEDs, a laboratory prototype is built and measured. And from the measured results, it could be concluded that the proposed driver has many better performances such as high power factor, low current harmonic, accurate average current control and switch protection.展开更多
This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output paramete...This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output parameters can be electronically/independently controlled by adjusting corresponding bias currents in the proportional, integral, and deviation controllers;circuit description of the PID controller is simply formulated, it consists of four CCCDBAs cooperating with two grounded capacitors, and PI and PD controllers are composed of three CCCCDBAs and a grounded capacitor. Without any external resistor, the proposed circuits are very suitable to develop into integrated circuit architecture. The given results from the PSpice simulation agree well with the theoretical anticipation. The approximate power consumption in a closed loop control system consisting of the PI, PD and PID controller with low-pass filter passive plant are 4.03 mW, 4.85 mW and 5.71 mW, respectively, at ±1.5 V power supply voltages.展开更多
A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a...A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.展开更多
A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effe...A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.展开更多
A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magne...A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.展开更多
Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluat...Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
This research paper contains a new electronically tunable current-mode biquadratic universal filter using a new active building block;current controlled differential difference current conveyor transconductance amplif...This research paper contains a new electronically tunable current-mode biquadratic universal filter using a new active building block;current controlled differential difference current conveyor transconductance amplifier (CCDDCCTA). The proposed filter provides the following important and desirable features: (i) One can use only one CCDDCCTA and two capacitors;(ii) One can get low pass (LP), band pass (BP), high pass (HP), notch (NF) and all pass (AP) current responses from the same configuration without any alteration;(iii) Passive components are grounded, which ease the integrated circuit implementation;(iv) Responses are electronically tunable;and (v) Sensitivity is low. Moreover, the non-ideality analysis shows that the parasitic passive components can be compensated for the proposed circuit. The functionality of the design is verified through SPICE simulations using 0.25 μm CMOS TSMC technology process parameters. Simulation result agrees well with the theoretical analysis.展开更多
The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and swit...Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and switching nature of DC-DC power electronic converters, there is a need for high-performance control strategies. This work summarized the dynamic behavior for the three basic switch-mode DC-DC power converters operating in continuous conduction mode, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> buck, boost, and buck-boost. A controller was designed using loop-shaping based on current-mode control that consists of two feedback loops. A high-gain compensator with wide bandwidth was used in the inner current loop for fast transient response. A proportional-integral controller was used in the outer voltage loop for regulation purposes. A proce</span><span style="font-family:Verdana;">dure was proposed for the parameters of the controller that ensures closed-loop</span><span style="font-family:Verdana;"> stability and output voltage regulation. The design-oriented analysis was applied to the three basic switch-mode DC-DC power converters. Experimental results were obtained for a switching regulator with a boost converter of 150 W, which exhibits non-minimum phase behavior. The performance of the controller was tested for voltage regulation by applying large load changes.展开更多
This paper presents a novel digital dual-loop control scheme of the PWM(PUlse width modulate)inverter. Deadbeat control technique are employed to enhance the performance. Half switching period delayed sampling and con...This paper presents a novel digital dual-loop control scheme of the PWM(PUlse width modulate)inverter. Deadbeat control technique are employed to enhance the performance. Half switching period delayed sampling and control timing strategy is used to improve the system dynamic response. Simulation and experimental results presented in the paper verified the validity of the proposed control scheme.展开更多
Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given qua...Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.展开更多
The recent advances in IC technology have led to the trend of designing hybrid systems to benefit both analog and the digital domain. Among analog circuits, multifunctional filter along with multiphase oscillator cons...The recent advances in IC technology have led to the trend of designing hybrid systems to benefit both analog and the digital domain. Among analog circuits, multifunctional filter along with multiphase oscillator constitutes a building block of critical importance. In this paper, a digitally reconfigurable multi-input-multi-output voltage mode multifunctional biquadratic filter has been presented. The circuit comprises of two differential voltage current conveyors (DVCCs), two grounded capacitors and two floating resistors. The digital controllability is incorporated using a current-summing network (CSN). Tunability of quality factor is achieved by the use of a 3-bit digital control word while keeping the resonant frequency constant. PSPICE simulations using TSMC 0.25 μm CMOS technology have been performed to validate the theoretically predicted results.展开更多
This paper presents two transadmittance mode universal filters having single voltage input and multiple current outputs. The filter employs three multiple output current controlled conveyors (MOCCCII) and two grounded...This paper presents two transadmittance mode universal filters having single voltage input and multiple current outputs. The filter employs three multiple output current controlled conveyors (MOCCCII) and two grounded capacitors. It can realize low pass, high pass, band pass, notch and all pass responses. As desired, the input voltage signal is inserted at high impedance input terminal and the output currents are obtained at high impedance output terminals and hence eases cascadability. The filter enjoys low sensitivity performance and low component spread;and exhibits electronic and orthogonal tunability of filter parameters via bias currents of MOCCCII. SPICE simulation results confirm the workability of the proposed structure.展开更多
In the field of analog VLSI design, current conveyors have reasonably established their identity as an important circuit design element. In the literature published during the past few years, numerous application have...In the field of analog VLSI design, current conveyors have reasonably established their identity as an important circuit design element. In the literature published during the past few years, numerous application have been reported which are based on a variety of current conveyors. In this paper, an oscillator circuit has been proposed. This oscillator is designed using a single positive type second generation current controlled current conveyor (CCCII+). A CCCII has parasitic input resistance on it’s current input node. This resistance could be exploited to reduce circuit complexities. Thus in this accord, a novel oscillator circuit is proposed which utilizes the parasitic resistance of the CCCII+ along with a few more passive components.展开更多
Two simple voltage-controlled-oscillators (VCO) with linear tuning laws employing only a single current feedback operational amplifier (CFOA) in conjunction with two analog multipliers (AM) have been highlighted. The ...Two simple voltage-controlled-oscillators (VCO) with linear tuning laws employing only a single current feedback operational amplifier (CFOA) in conjunction with two analog multipliers (AM) have been highlighted. The workability of the presented VCOs has been demonstrated by experimental results based upon AD844 type CFOAs and AD534 type AMs.展开更多
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-Technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)。
文摘Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.
文摘A new type of high power LED drivers is proposed by adopting an improved two-stages non-isolated configuration. In order to improve power factor and achieve accurate average current control under universal input voltages ranging from 100 Vrms to 240 Vrms, the power factor correction and average current mode control methods operating in continuous current conduction mode are designed and implemented. With the LUMILEDS emitter type LEDs, a laboratory prototype is built and measured. And from the measured results, it could be concluded that the proposed driver has many better performances such as high power factor, low current harmonic, accurate average current control and switch protection.
文摘This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output parameters can be electronically/independently controlled by adjusting corresponding bias currents in the proportional, integral, and deviation controllers;circuit description of the PID controller is simply formulated, it consists of four CCCDBAs cooperating with two grounded capacitors, and PI and PD controllers are composed of three CCCCDBAs and a grounded capacitor. Without any external resistor, the proposed circuits are very suitable to develop into integrated circuit architecture. The given results from the PSpice simulation agree well with the theoretical anticipation. The approximate power consumption in a closed loop control system consisting of the PI, PD and PID controller with low-pass filter passive plant are 4.03 mW, 4.85 mW and 5.71 mW, respectively, at ±1.5 V power supply voltages.
文摘A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.
文摘A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.
基金supported by ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)Hefei University of Technology Doctor Research Foundation of China(No.2011HGBZ1292)
文摘A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.
基金supported by the Technology Project of the State Grid Corporation Headquarters Management(Contract No.5100-202158467A-0-0-00).
文摘Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.
文摘This research paper contains a new electronically tunable current-mode biquadratic universal filter using a new active building block;current controlled differential difference current conveyor transconductance amplifier (CCDDCCTA). The proposed filter provides the following important and desirable features: (i) One can use only one CCDDCCTA and two capacitors;(ii) One can get low pass (LP), band pass (BP), high pass (HP), notch (NF) and all pass (AP) current responses from the same configuration without any alteration;(iii) Passive components are grounded, which ease the integrated circuit implementation;(iv) Responses are electronically tunable;and (v) Sensitivity is low. Moreover, the non-ideality analysis shows that the parasitic passive components can be compensated for the proposed circuit. The functionality of the design is verified through SPICE simulations using 0.25 μm CMOS TSMC technology process parameters. Simulation result agrees well with the theoretical analysis.
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.
文摘Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and switching nature of DC-DC power electronic converters, there is a need for high-performance control strategies. This work summarized the dynamic behavior for the three basic switch-mode DC-DC power converters operating in continuous conduction mode, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> buck, boost, and buck-boost. A controller was designed using loop-shaping based on current-mode control that consists of two feedback loops. A high-gain compensator with wide bandwidth was used in the inner current loop for fast transient response. A proportional-integral controller was used in the outer voltage loop for regulation purposes. A proce</span><span style="font-family:Verdana;">dure was proposed for the parameters of the controller that ensures closed-loop</span><span style="font-family:Verdana;"> stability and output voltage regulation. The design-oriented analysis was applied to the three basic switch-mode DC-DC power converters. Experimental results were obtained for a switching regulator with a boost converter of 150 W, which exhibits non-minimum phase behavior. The performance of the controller was tested for voltage regulation by applying large load changes.
文摘This paper presents a novel digital dual-loop control scheme of the PWM(PUlse width modulate)inverter. Deadbeat control technique are employed to enhance the performance. Half switching period delayed sampling and control timing strategy is used to improve the system dynamic response. Simulation and experimental results presented in the paper verified the validity of the proposed control scheme.
基金supported by the National Natural Science Foundation of China (60974001)Jiangsu "Six Personnel Peak" Talent-Funded Projects
文摘Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.
文摘The recent advances in IC technology have led to the trend of designing hybrid systems to benefit both analog and the digital domain. Among analog circuits, multifunctional filter along with multiphase oscillator constitutes a building block of critical importance. In this paper, a digitally reconfigurable multi-input-multi-output voltage mode multifunctional biquadratic filter has been presented. The circuit comprises of two differential voltage current conveyors (DVCCs), two grounded capacitors and two floating resistors. The digital controllability is incorporated using a current-summing network (CSN). Tunability of quality factor is achieved by the use of a 3-bit digital control word while keeping the resonant frequency constant. PSPICE simulations using TSMC 0.25 μm CMOS technology have been performed to validate the theoretically predicted results.
文摘This paper presents two transadmittance mode universal filters having single voltage input and multiple current outputs. The filter employs three multiple output current controlled conveyors (MOCCCII) and two grounded capacitors. It can realize low pass, high pass, band pass, notch and all pass responses. As desired, the input voltage signal is inserted at high impedance input terminal and the output currents are obtained at high impedance output terminals and hence eases cascadability. The filter enjoys low sensitivity performance and low component spread;and exhibits electronic and orthogonal tunability of filter parameters via bias currents of MOCCCII. SPICE simulation results confirm the workability of the proposed structure.
文摘In the field of analog VLSI design, current conveyors have reasonably established their identity as an important circuit design element. In the literature published during the past few years, numerous application have been reported which are based on a variety of current conveyors. In this paper, an oscillator circuit has been proposed. This oscillator is designed using a single positive type second generation current controlled current conveyor (CCCII+). A CCCII has parasitic input resistance on it’s current input node. This resistance could be exploited to reduce circuit complexities. Thus in this accord, a novel oscillator circuit is proposed which utilizes the parasitic resistance of the CCCII+ along with a few more passive components.
文摘Two simple voltage-controlled-oscillators (VCO) with linear tuning laws employing only a single current feedback operational amplifier (CFOA) in conjunction with two analog multipliers (AM) have been highlighted. The workability of the presented VCOs has been demonstrated by experimental results based upon AD844 type CFOAs and AD534 type AMs.