The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental resul...The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.展开更多
As one of common physical and mental ailments, insomnia may cause serious adverse effects on a patient's daily life. And serious accidents occur in long-term cases.1 Despite comprehensive treatments, 9.38%-17.0% of...As one of common physical and mental ailments, insomnia may cause serious adverse effects on a patient's daily life. And serious accidents occur in long-term cases.1 Despite comprehensive treatments, 9.38%-17.0% of the treated insomniacs fail to benefit at all. Thus the term of "refractory insomnia" has been coined.24 At present, there is no literature reporting the roles of estazolam plus alternating current magnetic field (ACMF) for treating insomnia. In the present study, estazolam plus ACMF was employed for the patients with refractory insomnia so as to explore the clinical efficacies of such a combined modality.展开更多
REBa_(2)Cu_(3)O_(7−x)(REBCO)coated conductors,owing to its high tensile strength and current‐carrying ability in a background field,are widely regarded a promising candidate in high‐field applications.Despite the gr...REBa_(2)Cu_(3)O_(7−x)(REBCO)coated conductors,owing to its high tensile strength and current‐carrying ability in a background field,are widely regarded a promising candidate in high‐field applications.Despite the great potentials,recent studies have highlighted the challenges posed by screening currents,which are featured by a highly nonuniform current distribution in the superconducting layer.In this paper,we report a comprehensive study on the behaviors of screening currents in a compact REBCO coil,specifically the screeningcurrent‐induced magnetic fields and strains.Experiments were carried out in the self‐generated magnetic field and a background field,respectively.In the self‐field condition,the full hysteresis of the magnetic field was obtained by applying current sweeps with repeatedly reversed polarity,as the nominal center field reached 9.17 T with a maximum peak current of 350 A.In a background field of 23.15 T,the insert coil generated a center field of 4.17 T with an applied current of 170 A.Ultimately,a total center field of 32.58 T was achieved before quench.Both the sequential model and the coupled model considering the perpendicular field modification due to conductor deformation are applied.The comparative study shows that,for this coil,the electromagnetic–mechanical coupling plays a trivial role in self‐field conditions up to 9 T.In contrast,with a high axial field dominated by the background field,the coupling effect has a stronger influence on the predicted current and strain distributions.Further discussions regarding the role of background field on the strains in the insert suggest potential design strategies to maximize the total center field.展开更多
As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additi...As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additionally,there is a growing need to address the alternating magnetic fields produced by the spacecraft itself.This paper introduces a novel modeling method for spacecraft magnetic dipoles using an integrated self-attention mechanism and a transformer combined with Kolmogorov-Arnold Networks.The self-attention mechanism captures correlations among globally sparse data,establishing dependencies b.etween sparse magnetometer readings.Concurrently,the Kolmogorov-Arnold Network,proficient in modeling implicit numerical relationships between data features,enhances the ability to learn subtle patterns.Comparative experiments validate the capability of the proposed method to precisely model magnetic dipoles,achieving maximum Root Mean Square Errors of 24.06 mA·m^(2)and 0.32 cm for size and location modeling,respectively.The spacecraft magnetic model established using this method accurately computes magnetic fields and alternating magnetic fields at designated surfaces or points.This approach facilitates the rapid and precise construction of individual and complete spacecraft magnetic models,enabling the verification of magnetic specifications from the spacecraft design phase.展开更多
The anisotropic transport property was investigated in a phase separation La(0.67)Ca(0.33)MnO3(LCMO) film grown on(001)-oriented Nd GaO3(NGO) substrate. It was found that the resistivity along the b-axis is ...The anisotropic transport property was investigated in a phase separation La(0.67)Ca(0.33)MnO3(LCMO) film grown on(001)-oriented Nd GaO3(NGO) substrate. It was found that the resistivity along the b-axis is much higher than that along the a-axis. Two resistivity peaks were observed in the temperature dependent measurement along the b-axis, one located at 91 K and the other centered at 165 K. Moreover, we also studied the response of the resistivities along the two axes to various electric currents, magnetic fields, and light illuminations. The resistivities along the two axes are sensitive to the magnetic field. However, the electric current and light illumination can influence the resistivity along the b-axis obviously, but have little effect on the resistivity along the a-axis. Based on these results, we believe that an anisotropicstrain-controlled MnO6 octahedra shear-mode deformation may provide a mechanism of conduction filaments paths along the a-axis, which leads to the anisotropic transport property.展开更多
Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is appli...Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse,electrons emitted from the cathode with high energy will strike the anode block wall.The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes,which decreases the output power in the radial output relativistic magnetron by about 15%(10%for the axial output relativistic magnetron),decreases the anode current by about 5%(5%for the axial output relativistic magnetron),and leads to a decrease of electronic efficiency by 8%(6%for the axial output relativistic magnetron).The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current,which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes.Thus,mode competition becomes more serious.展开更多
基金Projects(51074031,51271042,50874022)supported by the National Natural Science Foundation of ChinaProject(2013M530913)supported by the China Postdoctoral Science FoundationProject(DUT12RC(3)35)supported by the Fundamental Research Funds for the Central Universities of China
文摘The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.
文摘As one of common physical and mental ailments, insomnia may cause serious adverse effects on a patient's daily life. And serious accidents occur in long-term cases.1 Despite comprehensive treatments, 9.38%-17.0% of the treated insomniacs fail to benefit at all. Thus the term of "refractory insomnia" has been coined.24 At present, there is no literature reporting the roles of estazolam plus alternating current magnetic field (ACMF) for treating insomnia. In the present study, estazolam plus ACMF was employed for the patients with refractory insomnia so as to explore the clinical efficacies of such a combined modality.
基金supported by the National MCF Energy R&D Program under Grant No.2022YFE03150103the National Natural Science Foundation of China(NSFC)under Grant No.52277026the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers,Seoul National University in 2023.
文摘REBa_(2)Cu_(3)O_(7−x)(REBCO)coated conductors,owing to its high tensile strength and current‐carrying ability in a background field,are widely regarded a promising candidate in high‐field applications.Despite the great potentials,recent studies have highlighted the challenges posed by screening currents,which are featured by a highly nonuniform current distribution in the superconducting layer.In this paper,we report a comprehensive study on the behaviors of screening currents in a compact REBCO coil,specifically the screeningcurrent‐induced magnetic fields and strains.Experiments were carried out in the self‐generated magnetic field and a background field,respectively.In the self‐field condition,the full hysteresis of the magnetic field was obtained by applying current sweeps with repeatedly reversed polarity,as the nominal center field reached 9.17 T with a maximum peak current of 350 A.In a background field of 23.15 T,the insert coil generated a center field of 4.17 T with an applied current of 170 A.Ultimately,a total center field of 32.58 T was achieved before quench.Both the sequential model and the coupled model considering the perpendicular field modification due to conductor deformation are applied.The comparative study shows that,for this coil,the electromagnetic–mechanical coupling plays a trivial role in self‐field conditions up to 9 T.In contrast,with a high axial field dominated by the background field,the coupling effect has a stronger influence on the predicted current and strain distributions.Further discussions regarding the role of background field on the strains in the insert suggest potential design strategies to maximize the total center field.
基金supported by the National Key Research and Development Program of China(2020YFC2200901)。
文摘As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additionally,there is a growing need to address the alternating magnetic fields produced by the spacecraft itself.This paper introduces a novel modeling method for spacecraft magnetic dipoles using an integrated self-attention mechanism and a transformer combined with Kolmogorov-Arnold Networks.The self-attention mechanism captures correlations among globally sparse data,establishing dependencies b.etween sparse magnetometer readings.Concurrently,the Kolmogorov-Arnold Network,proficient in modeling implicit numerical relationships between data features,enhances the ability to learn subtle patterns.Comparative experiments validate the capability of the proposed method to precisely model magnetic dipoles,achieving maximum Root Mean Square Errors of 24.06 mA·m^(2)and 0.32 cm for size and location modeling,respectively.The spacecraft magnetic model established using this method accurately computes magnetic fields and alternating magnetic fields at designated surfaces or points.This approach facilitates the rapid and precise construction of individual and complete spacecraft magnetic models,enabling the verification of magnetic specifications from the spacecraft design phase.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CB921801,2012CB921403,and 2013CB921701)the National Natural Science Foundation of China(Grant Nos.11074285,51372064,and 11134007)
文摘The anisotropic transport property was investigated in a phase separation La(0.67)Ca(0.33)MnO3(LCMO) film grown on(001)-oriented Nd GaO3(NGO) substrate. It was found that the resistivity along the b-axis is much higher than that along the a-axis. Two resistivity peaks were observed in the temperature dependent measurement along the b-axis, one located at 91 K and the other centered at 165 K. Moreover, we also studied the response of the resistivities along the two axes to various electric currents, magnetic fields, and light illuminations. The resistivities along the two axes are sensitive to the magnetic field. However, the electric current and light illumination can influence the resistivity along the b-axis obviously, but have little effect on the resistivity along the a-axis. Based on these results, we believe that an anisotropicstrain-controlled MnO6 octahedra shear-mode deformation may provide a mechanism of conduction filaments paths along the a-axis, which leads to the anisotropic transport property.
基金supported by National Natural Science Foundation of China(No.61302010)the Foundation of Science and Technology on High Power Microwave Laboratory,Central University Foundation(2013KW07)Work at the University of New Mexico in USA was supportedby ONR Grant N00014-13-1-0565
文摘Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse,electrons emitted from the cathode with high energy will strike the anode block wall.The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes,which decreases the output power in the radial output relativistic magnetron by about 15%(10%for the axial output relativistic magnetron),decreases the anode current by about 5%(5%for the axial output relativistic magnetron),and leads to a decrease of electronic efficiency by 8%(6%for the axial output relativistic magnetron).The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current,which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes.Thus,mode competition becomes more serious.