Regulating serotonin expression can be used to treat psychotic depression. Mifepristone, a glu- cocorticoid receptor antagonist, is an effective candidate for psychotic depression treatment. However, the underlying me...Regulating serotonin expression can be used to treat psychotic depression. Mifepristone, a glu- cocorticoid receptor antagonist, is an effective candidate for psychotic depression treatment. However, the underlying mechanism related to serotonin transporter expression is poorly un- derstood. In this study, we cloned the human brain serotonin transporter into Xenopus oocytes, to establish an in vitro expression system. Two-electrode voltage clamp recordings were used to detect serotonin transporter activity. Our results show that mifepristone attenuates serotonin transporter activity by directly inhibiting the serotonin transporter, and suggests that the se- rotonin transporter is a pharmacological target of mifepristone for the treatment of psychotic depression.展开更多
Nanopore is an ultra-sensitive electrochemical technique for single molecular detection in confined space. To suppress the noise in detection of the weak current of nanopore, we investigated the influence of membrane ...Nanopore is an ultra-sensitive electrochemical technique for single molecular detection in confined space. To suppress the noise in detection of the weak current of nanopore, we investigated the influence of membrane capacitance and applied voltage on the noise of the current signal by model analysis, simulation and experiment. The obtained results demonstrated that membrane capacitance affects the noise by amplifying the noise of the applied voltage. Therefore, suppression of applied voltage noise is an efficient approach for reducing the noise in nanopore detection. Here, we developed an ultra-low noise instrument system for detecting the single molecule signal in nanopores. As demonstrated by nanopore experiments, the p-p noise of the developed system during the recording is reduced to 3.2B pA using the filter of 5 kHz. Therefore, the developed system could be applied in highly sensitive nanopore detection.展开更多
基金supported by the National Natural Science Foundation of China,No.81100912,81271376a grant from Xinxiang Medical University Foundation
文摘Regulating serotonin expression can be used to treat psychotic depression. Mifepristone, a glu- cocorticoid receptor antagonist, is an effective candidate for psychotic depression treatment. However, the underlying mechanism related to serotonin transporter expression is poorly un- derstood. In this study, we cloned the human brain serotonin transporter into Xenopus oocytes, to establish an in vitro expression system. Two-electrode voltage clamp recordings were used to detect serotonin transporter activity. Our results show that mifepristone attenuates serotonin transporter activity by directly inhibiting the serotonin transporter, and suggests that the se- rotonin transporter is a pharmacological target of mifepristone for the treatment of psychotic depression.
基金supported by the National Natural Science Foundation of China (21327807, 21421004)Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-02E00023)the Fundamental Research Funds for the Central Universities (222201718001, 222201717003)
文摘Nanopore is an ultra-sensitive electrochemical technique for single molecular detection in confined space. To suppress the noise in detection of the weak current of nanopore, we investigated the influence of membrane capacitance and applied voltage on the noise of the current signal by model analysis, simulation and experiment. The obtained results demonstrated that membrane capacitance affects the noise by amplifying the noise of the applied voltage. Therefore, suppression of applied voltage noise is an efficient approach for reducing the noise in nanopore detection. Here, we developed an ultra-low noise instrument system for detecting the single molecule signal in nanopores. As demonstrated by nanopore experiments, the p-p noise of the developed system during the recording is reduced to 3.2B pA using the filter of 5 kHz. Therefore, the developed system could be applied in highly sensitive nanopore detection.