Due to its significant attributes,the liquid metal current limiter(LMCL)is considered a new strategy for limiting short-circuit current in the power grid.A resistive wall liquid metal current limiter(RWLMCL)is designe...Due to its significant attributes,the liquid metal current limiter(LMCL)is considered a new strategy for limiting short-circuit current in the power grid.A resistive wall liquid metal current limiter(RWLMCL)is designed to advance the starting current-limiting time.Experiments are performed to investigate the dynamic behaviors of liquid metal,and the influence of different currents on the liquid metal self-shrinkage effect is compared and analyzed.Furthermore,the liquid metal self-shrinkage effect is mathematically modeled,and the reason for the formation of arc plasma is obtained by simulation.The laws of arc plasma formation and the current transfer in the cavity are revealed,and the motion mechanisms are explained by physical principles.The simulations are in accordance with the test data.It is demonstrated that the sudden change of the current density at both ends of the wall causes the liquid metal to shrink and depress under the electromagnetic force,and the current starts to transfer from the liquid metal path to the wall resistance path.The RWLMCL can effectively advance the starting current-limiting time.展开更多
To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direc...To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
Based on an analytical solution for the current point source in an anisotropic half-space,we study the apparent resistivity and apparent chargeability of a transversely isotropic medium with vertical and horizontal ax...Based on an analytical solution for the current point source in an anisotropic half-space,we study the apparent resistivity and apparent chargeability of a transversely isotropic medium with vertical and horizontal axes symmetry,respectively.We then provide a simple derivation of the anisotropy paradoxes in direct current resistivity and time-domain induced polarization methods.Analogous to the mean resistivity,we propose a formulation for deriving the mean polarizability.We also present a three-dimensional finite element algorithm for modeling the direct current resistivity and time-domain induced polarization using an unstructured tetrahedral grid.Finally,we provide the apparent resistivity and apparent chargeability curves of a tilted,transversely isotropic medium with diff erent angles,respectively.The subsequent results illustrate the anisotropy paradoxes of direct current resistivity and time-domain induced polarization.展开更多
Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current...Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC) resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection;with this method, the flanking interference can be reduced and the detection dis-tance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D) induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1) available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM), (2) high-resolution detection method in holes, (3) four-dimensional (4D) monitoring technology for water inrush sources, and (4) estimation of water volume in water-bearing structures.展开更多
In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. ...In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.展开更多
Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low...Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.展开更多
基金supported by National Natural Science Foundation of China(No.52177131)the Interdisciplinary Program of Wuhan National High Magnetic Field Center(No.WHMFC202130)Huazhong University of Science and Technology。
文摘Due to its significant attributes,the liquid metal current limiter(LMCL)is considered a new strategy for limiting short-circuit current in the power grid.A resistive wall liquid metal current limiter(RWLMCL)is designed to advance the starting current-limiting time.Experiments are performed to investigate the dynamic behaviors of liquid metal,and the influence of different currents on the liquid metal self-shrinkage effect is compared and analyzed.Furthermore,the liquid metal self-shrinkage effect is mathematically modeled,and the reason for the formation of arc plasma is obtained by simulation.The laws of arc plasma formation and the current transfer in the cavity are revealed,and the motion mechanisms are explained by physical principles.The simulations are in accordance with the test data.It is demonstrated that the sudden change of the current density at both ends of the wall causes the liquid metal to shrink and depress under the electromagnetic force,and the current starts to transfer from the liquid metal path to the wall resistance path.The RWLMCL can effectively advance the starting current-limiting time.
基金financially supported by the National Natural Science Foundation of China(No.41574127 and 41174104)the National Key Technology R&D Program for the 13th five-year plan(No.2016ZX05018006-006)
文摘To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
基金the special funding of Guiyang science and technology bureau and Guiyang University[GYUKY-[2021]]the National Key Research and Development Program of China-Geophysical Comprehensive Exploration and Information Extraction of Deep Mineral Resources(2016YFC0600505)the National K&D Program(2018YFC1504901,2018YFC1504904).
文摘Based on an analytical solution for the current point source in an anisotropic half-space,we study the apparent resistivity and apparent chargeability of a transversely isotropic medium with vertical and horizontal axes symmetry,respectively.We then provide a simple derivation of the anisotropy paradoxes in direct current resistivity and time-domain induced polarization methods.Analogous to the mean resistivity,we propose a formulation for deriving the mean polarizability.We also present a three-dimensional finite element algorithm for modeling the direct current resistivity and time-domain induced polarization using an unstructured tetrahedral grid.Finally,we provide the apparent resistivity and apparent chargeability curves of a tilted,transversely isotropic medium with diff erent angles,respectively.The subsequent results illustrate the anisotropy paradoxes of direct current resistivity and time-domain induced polarization.
基金supported by the National Program on Key Basic Research Project of China (973 Program) (Nos. 2013CB036002 and 2014CB046901)the National Key Technology R&D Program of the Ministry of Science and Technology of China (No. 2013BAK06B01)the National Natural Science Foundation of China (No. 51139004)
文摘Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC) resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection;with this method, the flanking interference can be reduced and the detection dis-tance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D) induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1) available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM), (2) high-resolution detection method in holes, (3) four-dimensional (4D) monitoring technology for water inrush sources, and (4) estimation of water volume in water-bearing structures.
基金Supported by National Natural Science Foundation of China(No.61774014 and No.60772080)
文摘In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604019,61574020,and 61376018)the Ministry of Science and Technology of China(Grant No.2016YFA0301300)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.2016RCGD22)
文摘Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.