Finite element method(FEM) was used to simulate the forming process of shotpeening the wing skin panel. Experiment of shotpeeing the wing skin panel was carried out. The results show that equivalent deformation in sho...Finite element method(FEM) was used to simulate the forming process of shotpeening the wing skin panel. Experiment of shotpeeing the wing skin panel was carried out. The results show that equivalent deformation in shotpeening process can be obtained using the elongation and bending result caused by thermal stress that is induced by applying temperature load on the surface of the part. Deformation of the part in the shotpeeing process can be analyzed using this method. The parameters and their relationships are identified.展开更多
The crystallization characteristics of a ubiquitous T-shaped phase change memory(PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed...The crystallization characteristics of a ubiquitous T-shaped phase change memory(PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed in this paper, the crystallization region under SET current pulse presents first on the corner of the bottom electron contact(BEC) and then promptly forms a filament shunting down the amorphous phase to achieve the low-resistance state, whereas the tiny disturb current pulse accelerates crystallization at the axis of symmetry in the phase change material. According to the different crystallization paths, a new structure of phase change material layer is proposed to improve the data retention for PCM without impeding SET operation.This structure only requires one or two additional process steps to dope nitrogen element in the center region of phase change material layer to increase the crystallization temperature in this confined region. The electrical-thermal characteristics of PCM cells with incremental doped radius have been analyzed and the best performance is presented when the doped radius is equal to the radius of the BEC.展开更多
A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in...A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in tidal current. Compared with those of the relative theoretical formula, the results are satisfactory. The model mentioned above has been applied to the water area of the Lianzhou Bay, Guangxi Province. On the basis of the analysis and comparison with the field data, it shows clearly that the model calculation results are reasonable.展开更多
Three differential equations based on different definitions of current density are compared. Formulation I is based on an incomplete equation for total current density (TCD). Formulations II and {I1 are based on inc...Three differential equations based on different definitions of current density are compared. Formulation I is based on an incomplete equation for total current density (TCD). Formulations II and {I1 are based on incomplete and complete equations for source current density (SCD), respectively. Using the weak form of finite element method (FEM), three formulations were applied in a spiral coil electromagnetic acoustic transducer (EMAT) example to solve magnetic vector potential (MVP). The input impedances calculated by Formulation III are in excellent agreement with the experimental measurements. Results show that the errors for Formulations I & II vary with coil diameter, coil spacing, lift-off distance and external excitation frequency, for the existence of eddy-current and skin & proximity effects. And the current distribution across the coil conductor also follows the same trend. It is better to choose Formulation I instead of Formulation Ili to solve MVP when the coil diameter is less than twice the skin depth for Formulation I is a low cost and high efficiency calculation method.展开更多
文摘Finite element method(FEM) was used to simulate the forming process of shotpeening the wing skin panel. Experiment of shotpeeing the wing skin panel was carried out. The results show that equivalent deformation in shotpeening process can be obtained using the elongation and bending result caused by thermal stress that is induced by applying temperature load on the surface of the part. Deformation of the part in the shotpeeing process can be analyzed using this method. The parameters and their relationships are identified.
基金support of the"Strategic Priority Research Program"of the Chinese Academy of Sciences(No.XDA09020402)the National Integrate Circuit Research Program of China(No.2009ZX02023-003)+2 种基金the National Natural Science Foundation of China(Nos.61261160500,61376006,61401444,61504157)the Science and Technology Council of Shanghai(Nos.14DZ2294900,15DZ2270900,14ZR1447500)the National Natural Science Foundation of China(61874178)
文摘The crystallization characteristics of a ubiquitous T-shaped phase change memory(PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed in this paper, the crystallization region under SET current pulse presents first on the corner of the bottom electron contact(BEC) and then promptly forms a filament shunting down the amorphous phase to achieve the low-resistance state, whereas the tiny disturb current pulse accelerates crystallization at the axis of symmetry in the phase change material. According to the different crystallization paths, a new structure of phase change material layer is proposed to improve the data retention for PCM without impeding SET operation.This structure only requires one or two additional process steps to dope nitrogen element in the center region of phase change material layer to increase the crystallization temperature in this confined region. The electrical-thermal characteristics of PCM cells with incremental doped radius have been analyzed and the best performance is presented when the doped radius is equal to the radius of the BEC.
文摘A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in tidal current. Compared with those of the relative theoretical formula, the results are satisfactory. The model mentioned above has been applied to the water area of the Lianzhou Bay, Guangxi Province. On the basis of the analysis and comparison with the field data, it shows clearly that the model calculation results are reasonable.
基金Project(2014BAF12B01)supported by the Key Projects in the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period,ChinaProject(51405520)supported by the National Natural Science Foundation of ChinaProject(2012CB619505)supported by National Basic Research Program of China
文摘Three differential equations based on different definitions of current density are compared. Formulation I is based on an incomplete equation for total current density (TCD). Formulations II and {I1 are based on incomplete and complete equations for source current density (SCD), respectively. Using the weak form of finite element method (FEM), three formulations were applied in a spiral coil electromagnetic acoustic transducer (EMAT) example to solve magnetic vector potential (MVP). The input impedances calculated by Formulation III are in excellent agreement with the experimental measurements. Results show that the errors for Formulations I & II vary with coil diameter, coil spacing, lift-off distance and external excitation frequency, for the existence of eddy-current and skin & proximity effects. And the current distribution across the coil conductor also follows the same trend. It is better to choose Formulation I instead of Formulation Ili to solve MVP when the coil diameter is less than twice the skin depth for Formulation I is a low cost and high efficiency calculation method.