Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun...Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.展开更多
Trigeminal neuralgia is a severe,disabling pain and its deafferentation remains a challenge for health providers.Transcranial direct current stimulation is a non-invasive stimulation technique which finds new utility ...Trigeminal neuralgia is a severe,disabling pain and its deafferentation remains a challenge for health providers.Transcranial direct current stimulation is a non-invasive stimulation technique which finds new utility in managing pain.There-fore,the introduction of alternative,non-invasive,safe,and effective methods should be considered in treating patients with trigeminal neuralgia unresponsive to conventional treatment.展开更多
BACKGROUND Supernumerary phantom limb(SPL)sensation is the experience of additional limbs,either single or a pair of limbs.Unique to traumatic spinal cord injuries,we report effect of transcranial direct current stimu...BACKGROUND Supernumerary phantom limb(SPL)sensation is the experience of additional limbs,either single or a pair of limbs.Unique to traumatic spinal cord injuries,we report effect of transcranial direct current stimulation(tDCS)on SPL pain in a patient with cervical cord injury.CASE SUMMARY The subject was a 57-year-old man who was diagnosed with complete spinal cord injury(C6/C5,motor level;C5/C5,sensory level;AIS-A)approximately three months ago.After a period of 2 wk,we administered anodal tDCS over the motor cortex for 15 minutes at an intensity of 1.5 mA.Following that treatment,the patient experienced a decrease of SPL pain intensity and frequency,which lasted for 1 week after the end of treatment.CONCLUSION Targeting the motor cortex through neuromodulation appears to be a promising option for the management of SPL pain.展开更多
Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disord...Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disorder leading to bradykinesia, rest tremor, postural changes, and non-motor symptoms such as depression, anxiety, sleep disorders, pain, and cognitive decline that compromises executive functions (EFs), responsible for the orderly execution of behaviors and tasks of daily life and intentional and directed actions. To this date, a few studies with transcranial direct current stimulation (tDCS) have shown beneficial effects in PD patients concerning specific motor and non-motor symptoms, targeting the motor cortex and/or prefrontal regions. Objective: The main objective of this study was to evaluate the effects of left prefrontal tDCS across a broad spectrum of motor and non-motor symptoms of PD using established validated scales. Method: Single-blind randomized clinical trial with 18 volunteers with PD, aged between 45 and 80 years (66.1 ± 9.65), who met inclusion and exclusion criteria. Participants were submitted to assessments of motor and non-motor functions employing psychometric scales and tests to evaluate EFs and were randomly divided into two groups: control (sham stimulation) and experimental (active stimulation). All participants were involved in three separate tDCS sessions. The anode was positioned over the left dorsolateral prefrontal cortex and the cathode over the right supraorbital region, with a direct current intensity of 2 mA, lasting 20 minutes. At the end of the three sessions, all participants were reassessed. Results: Significant effects of tDCS on non-motor functions were observed for cognition (verbal fluency of actions, clock copy test, appointment by visual confrontation, and verbal memory with immediate free recall) and subjective assessment of sleep quality (overall restlessness and discomfort in the arms and legs at night, leg and arm cramps at night and distressing dreams). There was also an improvement in the rate of errors and successes for congruent and incongruent stimuli of the Stroop Test. The beneficial effects on motor function were decreased rigidity, improved gait, and greater agility in the finger-tapping test. Conclusion: Three tDCS sessions showed positive results for participants with PD, producing significant improvements in various motor and non-motor functions, including sleep quality, cognition, and EFs. Additionally, the present results indicate that tDCS neuromodulation of the left dorsolateral prefrontal cortex region is feasible, safe, and provides significant objective benefits for PD patients.展开更多
BACKGROUND Transcranial direct current stimulation(tDCS)is proven to be safe in treating various neurological conditions in children and adolescents.It is also an effective method in the treatment of OCD in adults.AIM...BACKGROUND Transcranial direct current stimulation(tDCS)is proven to be safe in treating various neurological conditions in children and adolescents.It is also an effective method in the treatment of OCD in adults.AIM To assess the safety and efficacy of tDCS as an add-on therapy in drug-naive adolescents with OCD.METHODS We studied drug-naïve adolescents with OCD,using a Children’s Yale-Brown obsessive-compulsive scale(CY-BOCS)scale to assess their condition.Both active and sham groups were given fluoxetine,and we applied cathode and anode over the supplementary motor area and deltoid for 20 min in 10 sessions.Reassessment occurred at 2,6,and 12 wk using CY-BOCS.RESULTS Eighteen adolescents completed the study(10-active,8-sham group).CY-BOCS scores from baseline to 12 wk reduced significantly in both groups but change at baseline to 2 wk was significant in the active group only.The mean change at 2 wk was more in the active group(11.8±7.77 vs 5.25±2.22,P=0.056).Adverse effects between the groups were comparable.CONCLUSION tDCS is safe and well tolerated for the treatment of OCD in adolescents.However,there is a need for further studies with a larger sample population to confirm the effectiveness of tDCS as early augmentation in OCD in this population.展开更多
Background: Flow FL-100 is a transcranial direct current stimulation (tDCS) device self-administered by a patient at home in combination with a software application delivered wellbeing behaviour therapy training. tDCS...Background: Flow FL-100 is a transcranial direct current stimulation (tDCS) device self-administered by a patient at home in combination with a software application delivered wellbeing behaviour therapy training. tDCS has evidence of effectiveness in treating symptoms of depression. Purpose/Aim: This post marketing study evaluated the effect of Flow on depression for primary care general practice patients with depression symptoms. Methods: Open-label patient cohort design with no control group. Inclusion criteria were aged 18 years or over and reporting depression symptoms. Participants self-administered five 30 minute tDCS sessions per week for the first three weeks, and then 3 sessions per week following this. Three, six and ten week assessment with participant self-report measure: Montgomery- Åsberg Depression Rating Scale (MADRS-S). Results: MADRS-S remission rates were between 29% - 30% at three weeks, 33% - 34% at six-weeks and 50% at 10-weeks treatment. There was a significant improvement in MADRS-S with large effect sizes at all time points. Conclusions: Flow tDCS can be delivered through a primary healthcare general practice service and patients will choose to use. Flow tDCS provides an effective depression treatment in addition and as an alternative to antidepressants and psychotherapy. tDCS has evidence as an effective depression treatment, and the widespread availability of tDCS in primary care general practice should be considered.展开更多
Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of li...Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of life. The dorsolateral prefrontal cortex (DLPFC) has been a good target site for transcranial direct current stimulation (tDCS) due to its intense involvement in working memory. In our 2018 study, tDCS improved visual-verbal working memory in healthy subjects. Objective: This study examines the effects of tDCS on ADHD patients, particularly on verbal working memory. Methods: We conducted an experiment involving verbal working memory of two modalities, visual and auditory, and a sustained attention task that could affect working memory in 9 ADHD patients. Active or sham tDCS was applied to the left DLPFC in a single-blind crossover design. Results: tDCS significantly improved the accuracy of visual-verbal working memory. In contrast, tDCS did not affect auditory-verbal working memory and sustained attention. Conclusion: tDCS to the left DLPFC improved visual-verbal working memory in ADHD patients, with important implications for potential ADHD treatments.展开更多
The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under th...The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under the loading of rocks.An electrical and mechanics test system was established in this paper to explore the impacts of loading rates on PSCs.The results indicated that PSC curves of different rocks had different change laws under low/high loading rates.When the loading rate was relatively low,PSC curves firstly changed gently and then increased exponentially.Under high loading rates,PSC curves experienced the rapid increase stage,gentle increase stage and sudden change stage.The compressive strength could greatly affect the peak PSC in case of rock failure.The loading rate was a key factor in average PSC.Under low loading rates,the variations of PSCs conformed to the damage charge model of fracture mechanics,while they did not at the fracture moment.Under high loading rates,the PSCs at low stress didn’t fit the model due to the stress impact effects.The experimental results could provide theoretical basis for the influence of loading rates on PSCs.展开更多
Background: Transcranial direct current stimulation (tDCS) across cortical brain areas appears to improve various forms of pain, yet evidence of tDCS efficiency and ideal stimulation target is lacking. This study aime...Background: Transcranial direct current stimulation (tDCS) across cortical brain areas appears to improve various forms of pain, yet evidence of tDCS efficiency and ideal stimulation target is lacking. This study aimed to compare the add-on analgesic efficacy of concentric electrode transcranial direct current stimulation (CE-tDCS) stimulation over the primary motor cortex versus the insular cortex on the management of chronic postmastectomy pain. Method: Prospective randomized double-blind sham-controlled study enrolled eighty patients with chronic postmastectomy pain that were randomly assigned to four groups: active motor (AM), sham motor (SM), active insula (AI) and sham insula (SI) group, each received 5 sessions for 20-minute duration with 2 mA tDCS over the targeted area of the contralateral side of pain. Our primary outcome was VAS score, the secondary outcomes were VDS score, LANSS score and depression symptoms by HAM-D scores, assessment was done at 4 time points (prestimulation, after 5<sup>th</sup> session, 15<sup>th</sup> day and one month after the last session). Results: Both active tDCS groups (motor and insula) showed reduction of VAS (P Conclusion: Active tDCS stimulation either targeting the primary motor cortex or the insula cortex has add-on analgesic effect for controlling neuropathic chronic post mastectomy pain and the maximum effect was at 15 days after the last session.展开更多
Chronic pain, a multidimensional experience affecting individuals’ sensory, cognitive, and emotional aspects, significantly impacts their quality of life. Post-laminectomy syndrome, a condition characterized by persi...Chronic pain, a multidimensional experience affecting individuals’ sensory, cognitive, and emotional aspects, significantly impacts their quality of life. Post-laminectomy syndrome, a condition characterized by persistent back pain following spinal surgery, often leads to disability and increased healthcare utilization. Methods: This randomized, controlled, blind clinical trial aimed to investigate the efficacy of Transcranial Direct Current Stimulation (tDCS) in managing pain from post-laminectomy syndrome in patients. Twenty-four participants were assigned to three groups: sham stimulation, active stimulation over primary motor cortex (M1), or stimulation over dorsolateral prefrontal cortex (DLPFC). Stimulation was administered for five consecutive days, 20 minutes per session, using a current of 1.5 mA through 25 cm<sup>2</sup> electrodes. Pain intensity was assessed using Visual Analog Scale (VAS) before, during, and after intervention. Results: An ANOVA model demonstrates significant reduction in pain intensity compared to baseline in VAS, (F(7, 285) = 12.292;p 0.001;Power = 1.000;η2p = 0.534), in tDCS applied to M1, after five days of intervention. After stimulation, a significant improvement was observed in WHOQoL-Bref Quality of life item 1 (p = 0.04), considering statistical significant difference p 0.05. Correlation between the variables: quality of life, depression, anxiety and pain also demonstrates reduction in depression and anxiety according to Beck’s Depression and Anxiety Inventories (BDI and BAI), p 0.05. This effect was not observed in DLPFC stimulation group. Patients who believed they received active stimulation, in sham group, demonstrated potential for effective blinding. Conclusion: The tDCS applied to primary motor cortex effectively improved pain management and psychiatry symptoms in post-laminectomy syndrome patients. The technique’s low cost, ease of use, and high tolerability make it a promising adjuvant therapy for chronic pain conditions like post-laminectomy syndrome.展开更多
Non-invasive brain stimulations mainly consist of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Repetitive transcranial magnetic stimulation exhib- its satisfactory outcomes...Non-invasive brain stimulations mainly consist of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Repetitive transcranial magnetic stimulation exhib- its satisfactory outcomes in improving multiple sclerosis, stroke, spinal cord injury and cerebral palsy-induced spasticity. By contrast, transcranial direct current stimulation has only been studied in post-stroke spasticity. To better validate the efficacy of non-invasive brain stimulations in im- proving the spasticity post-stroke, more prospective cohort studies involving large sample sizes are needed.展开更多
Previous studies have shown that transcranial pulse current stimulation(tPCS) can increase cerebral neural plasticity and improve patients' locomotor function.However, the precise mechanisms underlying this effect...Previous studies have shown that transcranial pulse current stimulation(tPCS) can increase cerebral neural plasticity and improve patients' locomotor function.However, the precise mechanisms underlying this effect remain unclear.In the present study, rat models of stroke established by occlusion of the right cerebral middle artery were subjected to tPCS, 20 minutes per day for 7 successive days.tPCS significantly reduced the Bederson score, increased the foot print area of the affected limbs, and reduced the standing time of affected limbs of rats with stroke compared with that before intervention.Immunofluorescence staining and western blot assay revealed that tPCS significantly increased the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.This finding suggests that tPCS can improve the locomotor function of rats with stroke by regulating the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.These findings may provide a new method for the clinical treatment of poststroke motor dysfunction and a theoretical basis for clinical application of tPCS.The study was approved by the Animal Use and Management Committee of Shanghai University of Traditional Chinese Medicine of China(approval No.PZSHUTCM190315003) on February 22, 2019.展开更多
For decades visual field defects were considered irreversible because it was thought that in the visual system the regeneration potential of the neuronal tissues is low.Nevertheless,there is always some potential for ...For decades visual field defects were considered irreversible because it was thought that in the visual system the regeneration potential of the neuronal tissues is low.Nevertheless,there is always some potential for partial recovery of the visual field defect that can be achieved through induction of neuroplasticity.Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy.It is maintained throughout life and just as neurological rehabilitation can improve motor coordination,visual field defects in glaucoma,diabetic retinopathy or optic neuropathy can be improved by inducing neuroplasticity.In ophthalmology many new treatment paradigms have been tested that can induce neuroplastic changes,including non-invasive alternating current stimulation.Treatment with alternating current stimulation(e.g.,30 minutes,daily for 10 days using transorbital electrodes and^10 Hz)activates the entire retina and parts of the brain.Electroencephalography and functional magnetic resonance imaging studies revealed local activation of the visual cortex,global reorganization of functional brain networks,and enhanced blood flow,which together activate neurons and their networks.The future of low vision is optimistic because vision loss is indeed,partially reversible.展开更多
Transcranial direct current stimulation(tDCS)has been reportedly beneficial for different neurodegenerative disorders.tDCS has been reported as a potential adjunctive or alternative treatment for auditory verbal hallu...Transcranial direct current stimulation(tDCS)has been reportedly beneficial for different neurodegenerative disorders.tDCS has been reported as a potential adjunctive or alternative treatment for auditory verbal hallucination(AVH).This study aims to review the effects of tDCS on AVH in patients with schizophrenia through combining the evidence from randomized clinical trials(RCTs).The databases of PsycINFO(2000–2019),PubMed(2000–2019),EMBASE(2000–2019),CINAHL(2000–2019),Web of Science(2000–2019),and Scopus(2000–2019)were systematically searched.The clinical trials with RCT design were selected for final analysis.A total of nine RCTs were eligible and included in the review.Nine RCTs were included in the final analysis.Among them,six RCTs reported a significant reduction of AVH after repeated sessions of tDCS,whereas three RCTs did not show any advantage of active tDCS over sham tDCS.The current studies showed an overall decrease of approximately 28%of AVH after active tDCS and 10%after sham tDCS.The tDCS protocols targeting the sensorimotor frontal-parietal network showed greater treatment effects compared with the protocols targeting other regions.In this regard,cathodal tDCS over the left temporoparietal area showed inhibitory effects on AVHs.The most effective tDCS protocol on AVHs was twice-daily sessions(2 mA,20-minute duration)over 5 consecutive days(10 sessions)with the anode over the left dorsolateral prefrontal cortex and the cathode over the left temporal area.Some patient-specific and diseasespecific factors such as young age,nonsmoking status,and higher frequencies of AVHs seemed to be the predictors of treatment response.Taken together,the results of tDCS as an alternative treatment option for AVH show controversy among current literatures,since not all studies were positive.However,the studies targeting the same site of the brain showed that the tDCS could be a promising treatment option to reduce AVH.Further RCTs,with larger sample sizes,should be conducted to reach a conclusion on the efficacy of tDCS for AVH and to develop an effective therapeutic protocol for clinical setting.展开更多
Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments...Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.展开更多
Anodal transcranial direct current stimulation(AtDCS)has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer’s disease in the preclinical stage.However,this enhancement was only observed imm...Anodal transcranial direct current stimulation(AtDCS)has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer’s disease in the preclinical stage.However,this enhancement was only observed immediately after AtDCS,and the long-term effect of AtDCS remains unknown.In this study,we treated 26-week-old mouse models of Alzheimer’s disease in the preclinical stage with 10 AtDCS sessions or sham stimulation.The Morris water maze,novel object recognition task,and novel object location test were implemented to evaluate spatial learning memory and recognition memory of mice.Western blotting was used to detect the relevant protein content.Morphological changes were observed using immunohistochemistry and immunofluorescence staining.Six weeks after treatment,the mice subjected to AtDCS sessions had a shorter escape latency,a shorter path length,more platform area crossings,and spent more time in the target quadrant than sham-stimulated mice.The mice subjected to AtDCS sessions also performed better in the novel object recognition and novel object location tests than sham-stimulated mice.Furthermore,AtDCS reduced the levels of amyloid-β42 and glial fibrillary acidic protein,a marker of astrocyte activation,and increased the level of neuronal marker NeuN in hippocampal tissue.These findings suggest that AtDCS can improve the spatial learning and memory abilities and pathological state of an APP/PS1 mouse model of Alzheimer’s disease in the preclinical stage,with improvements that last for at least 6 weeks.展开更多
The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation(t DCS) has been the subject of great interest among researchers ...The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation(t DCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally,we provide an overview of t DCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding t DCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding t DCS efficacy in psychiatry.展开更多
We performed functional MRI examinations in six right-handed healthy subjects.During functional MRI scanning,transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cor...We performed functional MRI examinations in six right-handed healthy subjects.During functional MRI scanning,transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation.This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions.Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation.These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.展开更多
Transcranial direct current stimulation (tDCS), an emerging technique for non-invasive brain stimulation, is increasingly used to induce changes in cortical excitability and modulate motor behavior, especially for u...Transcranial direct current stimulation (tDCS), an emerging technique for non-invasive brain stimulation, is increasingly used to induce changes in cortical excitability and modulate motor behavior, especially for upper limbs. The purpose of this study was to investigate the effects of tDCS of the primary motor cortex on visuomotor coordination based on three levels of task difficulty in healthy subjects. Thirty-eight healthy participants underwent real tDCS or sham tDCS. Using a single-blind, sham-controlled crossover design, tDCS was applied to the primary motor cortex. For real tDCS conditions, tDCS intensity was 1 mA while stimulation was applied for 15 minutes. For the sham tDCS, electrodes were placed in the same position, but the stimu- lator was turned off after 5 seconds. Visuomotor tracking task, consisting of three levels (levels 1, 2, 3) of difficulty with higher level indicating greater difficulty, was performed before and after tDCS application. At level 2, real tDCS of the primary motor cortex improved the accurate index compared to the sham tDCS. However, at levels 1 and 3, the accurate index was not significantly increased after real tDCS compared to the sham tDCS. These findings suggest that tasks of mod- erate difficulty may improve visuomotor coordination in healthy subjects when tDCS is applied compared with easier or more difficult tasks.展开更多
This study investigated the effect of transcranial direct current stimulation(t DCS) polarity depending on lateralized function of task property in normal individuals performing visuomotor and simple repetitive task...This study investigated the effect of transcranial direct current stimulation(t DCS) polarity depending on lateralized function of task property in normal individuals performing visuomotor and simple repetitive tasks. Thirty healthy participants with no neurological disorders were recruited to participate in this study. Participants were randomly allocated into active or control condition. For the active condition, t DCS intensity was 2 m A with stimulation applied for 15 minutes to the right hemisphere(t DCS condition). For the sham control, electrodes were placed in the same position, but the stimulator was turned off after 30 seconds(sham condition). The tapping and tracking task tests were performed before and after for both conditions. Univariate analysis revealed significant difference only in the tracking task. For direct comparison of both tasks within each group, the tracking task had significantly higher Z score than the tapping task in the t DCS group(P 〈 0.05). Thus, our study indicates that stimulation of the right hemisphere using t DCS can effectively improve visuomotor(tracking) task over simple repetitive(tapping) task.展开更多
基金supported by National Key R&D Program of China(No.2022YFC3004705)the National Natural Science Foundation of China(Nos.52074280,52227901 and 52204249)National Natural Science Foundation of China Youth Fund(No.52104230).
文摘Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.
文摘Trigeminal neuralgia is a severe,disabling pain and its deafferentation remains a challenge for health providers.Transcranial direct current stimulation is a non-invasive stimulation technique which finds new utility in managing pain.There-fore,the introduction of alternative,non-invasive,safe,and effective methods should be considered in treating patients with trigeminal neuralgia unresponsive to conventional treatment.
文摘BACKGROUND Supernumerary phantom limb(SPL)sensation is the experience of additional limbs,either single or a pair of limbs.Unique to traumatic spinal cord injuries,we report effect of transcranial direct current stimulation(tDCS)on SPL pain in a patient with cervical cord injury.CASE SUMMARY The subject was a 57-year-old man who was diagnosed with complete spinal cord injury(C6/C5,motor level;C5/C5,sensory level;AIS-A)approximately three months ago.After a period of 2 wk,we administered anodal tDCS over the motor cortex for 15 minutes at an intensity of 1.5 mA.Following that treatment,the patient experienced a decrease of SPL pain intensity and frequency,which lasted for 1 week after the end of treatment.CONCLUSION Targeting the motor cortex through neuromodulation appears to be a promising option for the management of SPL pain.
文摘Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disorder leading to bradykinesia, rest tremor, postural changes, and non-motor symptoms such as depression, anxiety, sleep disorders, pain, and cognitive decline that compromises executive functions (EFs), responsible for the orderly execution of behaviors and tasks of daily life and intentional and directed actions. To this date, a few studies with transcranial direct current stimulation (tDCS) have shown beneficial effects in PD patients concerning specific motor and non-motor symptoms, targeting the motor cortex and/or prefrontal regions. Objective: The main objective of this study was to evaluate the effects of left prefrontal tDCS across a broad spectrum of motor and non-motor symptoms of PD using established validated scales. Method: Single-blind randomized clinical trial with 18 volunteers with PD, aged between 45 and 80 years (66.1 ± 9.65), who met inclusion and exclusion criteria. Participants were submitted to assessments of motor and non-motor functions employing psychometric scales and tests to evaluate EFs and were randomly divided into two groups: control (sham stimulation) and experimental (active stimulation). All participants were involved in three separate tDCS sessions. The anode was positioned over the left dorsolateral prefrontal cortex and the cathode over the right supraorbital region, with a direct current intensity of 2 mA, lasting 20 minutes. At the end of the three sessions, all participants were reassessed. Results: Significant effects of tDCS on non-motor functions were observed for cognition (verbal fluency of actions, clock copy test, appointment by visual confrontation, and verbal memory with immediate free recall) and subjective assessment of sleep quality (overall restlessness and discomfort in the arms and legs at night, leg and arm cramps at night and distressing dreams). There was also an improvement in the rate of errors and successes for congruent and incongruent stimuli of the Stroop Test. The beneficial effects on motor function were decreased rigidity, improved gait, and greater agility in the finger-tapping test. Conclusion: Three tDCS sessions showed positive results for participants with PD, producing significant improvements in various motor and non-motor functions, including sleep quality, cognition, and EFs. Additionally, the present results indicate that tDCS neuromodulation of the left dorsolateral prefrontal cortex region is feasible, safe, and provides significant objective benefits for PD patients.
文摘BACKGROUND Transcranial direct current stimulation(tDCS)is proven to be safe in treating various neurological conditions in children and adolescents.It is also an effective method in the treatment of OCD in adults.AIM To assess the safety and efficacy of tDCS as an add-on therapy in drug-naive adolescents with OCD.METHODS We studied drug-naïve adolescents with OCD,using a Children’s Yale-Brown obsessive-compulsive scale(CY-BOCS)scale to assess their condition.Both active and sham groups were given fluoxetine,and we applied cathode and anode over the supplementary motor area and deltoid for 20 min in 10 sessions.Reassessment occurred at 2,6,and 12 wk using CY-BOCS.RESULTS Eighteen adolescents completed the study(10-active,8-sham group).CY-BOCS scores from baseline to 12 wk reduced significantly in both groups but change at baseline to 2 wk was significant in the active group only.The mean change at 2 wk was more in the active group(11.8±7.77 vs 5.25±2.22,P=0.056).Adverse effects between the groups were comparable.CONCLUSION tDCS is safe and well tolerated for the treatment of OCD in adolescents.However,there is a need for further studies with a larger sample population to confirm the effectiveness of tDCS as early augmentation in OCD in this population.
文摘Background: Flow FL-100 is a transcranial direct current stimulation (tDCS) device self-administered by a patient at home in combination with a software application delivered wellbeing behaviour therapy training. tDCS has evidence of effectiveness in treating symptoms of depression. Purpose/Aim: This post marketing study evaluated the effect of Flow on depression for primary care general practice patients with depression symptoms. Methods: Open-label patient cohort design with no control group. Inclusion criteria were aged 18 years or over and reporting depression symptoms. Participants self-administered five 30 minute tDCS sessions per week for the first three weeks, and then 3 sessions per week following this. Three, six and ten week assessment with participant self-report measure: Montgomery- Åsberg Depression Rating Scale (MADRS-S). Results: MADRS-S remission rates were between 29% - 30% at three weeks, 33% - 34% at six-weeks and 50% at 10-weeks treatment. There was a significant improvement in MADRS-S with large effect sizes at all time points. Conclusions: Flow tDCS can be delivered through a primary healthcare general practice service and patients will choose to use. Flow tDCS provides an effective depression treatment in addition and as an alternative to antidepressants and psychotherapy. tDCS has evidence as an effective depression treatment, and the widespread availability of tDCS in primary care general practice should be considered.
文摘Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of life. The dorsolateral prefrontal cortex (DLPFC) has been a good target site for transcranial direct current stimulation (tDCS) due to its intense involvement in working memory. In our 2018 study, tDCS improved visual-verbal working memory in healthy subjects. Objective: This study examines the effects of tDCS on ADHD patients, particularly on verbal working memory. Methods: We conducted an experiment involving verbal working memory of two modalities, visual and auditory, and a sustained attention task that could affect working memory in 9 ADHD patients. Active or sham tDCS was applied to the left DLPFC in a single-blind crossover design. Results: tDCS significantly improved the accuracy of visual-verbal working memory. In contrast, tDCS did not affect auditory-verbal working memory and sustained attention. Conclusion: tDCS to the left DLPFC improved visual-verbal working memory in ADHD patients, with important implications for potential ADHD treatments.
基金the State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(No.SKLCRSM22KF011)the National Natural Science Foundation of China(Nos.52130411,52104191,51974120,and 51904103)+1 种基金the Natural Science Foundation of Hunan Province(No.2021JJ40204)the Science and Technology Innovation Program of Hunan Province(No.2020RC3047).
文摘The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under the loading of rocks.An electrical and mechanics test system was established in this paper to explore the impacts of loading rates on PSCs.The results indicated that PSC curves of different rocks had different change laws under low/high loading rates.When the loading rate was relatively low,PSC curves firstly changed gently and then increased exponentially.Under high loading rates,PSC curves experienced the rapid increase stage,gentle increase stage and sudden change stage.The compressive strength could greatly affect the peak PSC in case of rock failure.The loading rate was a key factor in average PSC.Under low loading rates,the variations of PSCs conformed to the damage charge model of fracture mechanics,while they did not at the fracture moment.Under high loading rates,the PSCs at low stress didn’t fit the model due to the stress impact effects.The experimental results could provide theoretical basis for the influence of loading rates on PSCs.
文摘Background: Transcranial direct current stimulation (tDCS) across cortical brain areas appears to improve various forms of pain, yet evidence of tDCS efficiency and ideal stimulation target is lacking. This study aimed to compare the add-on analgesic efficacy of concentric electrode transcranial direct current stimulation (CE-tDCS) stimulation over the primary motor cortex versus the insular cortex on the management of chronic postmastectomy pain. Method: Prospective randomized double-blind sham-controlled study enrolled eighty patients with chronic postmastectomy pain that were randomly assigned to four groups: active motor (AM), sham motor (SM), active insula (AI) and sham insula (SI) group, each received 5 sessions for 20-minute duration with 2 mA tDCS over the targeted area of the contralateral side of pain. Our primary outcome was VAS score, the secondary outcomes were VDS score, LANSS score and depression symptoms by HAM-D scores, assessment was done at 4 time points (prestimulation, after 5<sup>th</sup> session, 15<sup>th</sup> day and one month after the last session). Results: Both active tDCS groups (motor and insula) showed reduction of VAS (P Conclusion: Active tDCS stimulation either targeting the primary motor cortex or the insula cortex has add-on analgesic effect for controlling neuropathic chronic post mastectomy pain and the maximum effect was at 15 days after the last session.
文摘Chronic pain, a multidimensional experience affecting individuals’ sensory, cognitive, and emotional aspects, significantly impacts their quality of life. Post-laminectomy syndrome, a condition characterized by persistent back pain following spinal surgery, often leads to disability and increased healthcare utilization. Methods: This randomized, controlled, blind clinical trial aimed to investigate the efficacy of Transcranial Direct Current Stimulation (tDCS) in managing pain from post-laminectomy syndrome in patients. Twenty-four participants were assigned to three groups: sham stimulation, active stimulation over primary motor cortex (M1), or stimulation over dorsolateral prefrontal cortex (DLPFC). Stimulation was administered for five consecutive days, 20 minutes per session, using a current of 1.5 mA through 25 cm<sup>2</sup> electrodes. Pain intensity was assessed using Visual Analog Scale (VAS) before, during, and after intervention. Results: An ANOVA model demonstrates significant reduction in pain intensity compared to baseline in VAS, (F(7, 285) = 12.292;p 0.001;Power = 1.000;η2p = 0.534), in tDCS applied to M1, after five days of intervention. After stimulation, a significant improvement was observed in WHOQoL-Bref Quality of life item 1 (p = 0.04), considering statistical significant difference p 0.05. Correlation between the variables: quality of life, depression, anxiety and pain also demonstrates reduction in depression and anxiety according to Beck’s Depression and Anxiety Inventories (BDI and BAI), p 0.05. This effect was not observed in DLPFC stimulation group. Patients who believed they received active stimulation, in sham group, demonstrated potential for effective blinding. Conclusion: The tDCS applied to primary motor cortex effectively improved pain management and psychiatry symptoms in post-laminectomy syndrome patients. The technique’s low cost, ease of use, and high tolerability make it a promising adjuvant therapy for chronic pain conditions like post-laminectomy syndrome.
基金supported in part by grants from Foundation La MaratóTV3.No.PI110932
文摘Non-invasive brain stimulations mainly consist of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Repetitive transcranial magnetic stimulation exhib- its satisfactory outcomes in improving multiple sclerosis, stroke, spinal cord injury and cerebral palsy-induced spasticity. By contrast, transcranial direct current stimulation has only been studied in post-stroke spasticity. To better validate the efficacy of non-invasive brain stimulations in im- proving the spasticity post-stroke, more prospective cohort studies involving large sample sizes are needed.
基金supported by the National Key R&D Program of China, No.2018 YFC2001600(to CLS)the Shanghai Health Commission Accelerated the Development of Traditional Chinese Medicine Three-Year Action Plan Project, No.ZY(2018-2020)-CCCX-2001-06/2004-05(to CLS)+1 种基金the Program of Shanghai Academic Research Leader, No.19 XD1403600(to CLS)the National Natural Science Foundation of China for the Youth Project, No.81704163(to JJZ)。
文摘Previous studies have shown that transcranial pulse current stimulation(tPCS) can increase cerebral neural plasticity and improve patients' locomotor function.However, the precise mechanisms underlying this effect remain unclear.In the present study, rat models of stroke established by occlusion of the right cerebral middle artery were subjected to tPCS, 20 minutes per day for 7 successive days.tPCS significantly reduced the Bederson score, increased the foot print area of the affected limbs, and reduced the standing time of affected limbs of rats with stroke compared with that before intervention.Immunofluorescence staining and western blot assay revealed that tPCS significantly increased the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.This finding suggests that tPCS can improve the locomotor function of rats with stroke by regulating the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.These findings may provide a new method for the clinical treatment of poststroke motor dysfunction and a theoretical basis for clinical application of tPCS.The study was approved by the Animal Use and Management Committee of Shanghai University of Traditional Chinese Medicine of China(approval No.PZSHUTCM190315003) on February 22, 2019.
文摘For decades visual field defects were considered irreversible because it was thought that in the visual system the regeneration potential of the neuronal tissues is low.Nevertheless,there is always some potential for partial recovery of the visual field defect that can be achieved through induction of neuroplasticity.Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy.It is maintained throughout life and just as neurological rehabilitation can improve motor coordination,visual field defects in glaucoma,diabetic retinopathy or optic neuropathy can be improved by inducing neuroplasticity.In ophthalmology many new treatment paradigms have been tested that can induce neuroplastic changes,including non-invasive alternating current stimulation.Treatment with alternating current stimulation(e.g.,30 minutes,daily for 10 days using transorbital electrodes and^10 Hz)activates the entire retina and parts of the brain.Electroencephalography and functional magnetic resonance imaging studies revealed local activation of the visual cortex,global reorganization of functional brain networks,and enhanced blood flow,which together activate neurons and their networks.The future of low vision is optimistic because vision loss is indeed,partially reversible.
文摘Transcranial direct current stimulation(tDCS)has been reportedly beneficial for different neurodegenerative disorders.tDCS has been reported as a potential adjunctive or alternative treatment for auditory verbal hallucination(AVH).This study aims to review the effects of tDCS on AVH in patients with schizophrenia through combining the evidence from randomized clinical trials(RCTs).The databases of PsycINFO(2000–2019),PubMed(2000–2019),EMBASE(2000–2019),CINAHL(2000–2019),Web of Science(2000–2019),and Scopus(2000–2019)were systematically searched.The clinical trials with RCT design were selected for final analysis.A total of nine RCTs were eligible and included in the review.Nine RCTs were included in the final analysis.Among them,six RCTs reported a significant reduction of AVH after repeated sessions of tDCS,whereas three RCTs did not show any advantage of active tDCS over sham tDCS.The current studies showed an overall decrease of approximately 28%of AVH after active tDCS and 10%after sham tDCS.The tDCS protocols targeting the sensorimotor frontal-parietal network showed greater treatment effects compared with the protocols targeting other regions.In this regard,cathodal tDCS over the left temporoparietal area showed inhibitory effects on AVHs.The most effective tDCS protocol on AVHs was twice-daily sessions(2 mA,20-minute duration)over 5 consecutive days(10 sessions)with the anode over the left dorsolateral prefrontal cortex and the cathode over the left temporal area.Some patient-specific and diseasespecific factors such as young age,nonsmoking status,and higher frequencies of AVHs seemed to be the predictors of treatment response.Taken together,the results of tDCS as an alternative treatment option for AVH show controversy among current literatures,since not all studies were positive.However,the studies targeting the same site of the brain showed that the tDCS could be a promising treatment option to reduce AVH.Further RCTs,with larger sample sizes,should be conducted to reach a conclusion on the efficacy of tDCS for AVH and to develop an effective therapeutic protocol for clinical setting.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea of Republic, No. 2012R1A1B4003477
文摘Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.
基金supported by the National Natural Science Foundation of China,No.31971287(to XYW)the Advanced Interdisciplinary Studies Foundation of School of Basic Medical Science,Army Medical University of China,No.2018JCQY07(to HZW).
文摘Anodal transcranial direct current stimulation(AtDCS)has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer’s disease in the preclinical stage.However,this enhancement was only observed immediately after AtDCS,and the long-term effect of AtDCS remains unknown.In this study,we treated 26-week-old mouse models of Alzheimer’s disease in the preclinical stage with 10 AtDCS sessions or sham stimulation.The Morris water maze,novel object recognition task,and novel object location test were implemented to evaluate spatial learning memory and recognition memory of mice.Western blotting was used to detect the relevant protein content.Morphological changes were observed using immunohistochemistry and immunofluorescence staining.Six weeks after treatment,the mice subjected to AtDCS sessions had a shorter escape latency,a shorter path length,more platform area crossings,and spent more time in the target quadrant than sham-stimulated mice.The mice subjected to AtDCS sessions also performed better in the novel object recognition and novel object location tests than sham-stimulated mice.Furthermore,AtDCS reduced the levels of amyloid-β42 and glial fibrillary acidic protein,a marker of astrocyte activation,and increased the level of neuronal marker NeuN in hippocampal tissue.These findings suggest that AtDCS can improve the spatial learning and memory abilities and pathological state of an APP/PS1 mouse model of Alzheimer’s disease in the preclinical stage,with improvements that last for at least 6 weeks.
文摘The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation(t DCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally,we provide an overview of t DCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding t DCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding t DCS efficacy in psychiatry.
基金supported by a National Research Foundation of Korea Grant funded by the Korean Government,No.2009-0064682
文摘We performed functional MRI examinations in six right-handed healthy subjects.During functional MRI scanning,transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation.This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions.Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation.These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning,No.2012R1A1B4003477
文摘Transcranial direct current stimulation (tDCS), an emerging technique for non-invasive brain stimulation, is increasingly used to induce changes in cortical excitability and modulate motor behavior, especially for upper limbs. The purpose of this study was to investigate the effects of tDCS of the primary motor cortex on visuomotor coordination based on three levels of task difficulty in healthy subjects. Thirty-eight healthy participants underwent real tDCS or sham tDCS. Using a single-blind, sham-controlled crossover design, tDCS was applied to the primary motor cortex. For real tDCS conditions, tDCS intensity was 1 mA while stimulation was applied for 15 minutes. For the sham tDCS, electrodes were placed in the same position, but the stimu- lator was turned off after 5 seconds. Visuomotor tracking task, consisting of three levels (levels 1, 2, 3) of difficulty with higher level indicating greater difficulty, was performed before and after tDCS application. At level 2, real tDCS of the primary motor cortex improved the accurate index compared to the sham tDCS. However, at levels 1 and 3, the accurate index was not significantly increased after real tDCS compared to the sham tDCS. These findings suggest that tasks of mod- erate difficulty may improve visuomotor coordination in healthy subjects when tDCS is applied compared with easier or more difficult tasks.
文摘This study investigated the effect of transcranial direct current stimulation(t DCS) polarity depending on lateralized function of task property in normal individuals performing visuomotor and simple repetitive tasks. Thirty healthy participants with no neurological disorders were recruited to participate in this study. Participants were randomly allocated into active or control condition. For the active condition, t DCS intensity was 2 m A with stimulation applied for 15 minutes to the right hemisphere(t DCS condition). For the sham control, electrodes were placed in the same position, but the stimulator was turned off after 30 seconds(sham condition). The tapping and tracking task tests were performed before and after for both conditions. Univariate analysis revealed significant difference only in the tracking task. For direct comparison of both tasks within each group, the tracking task had significantly higher Z score than the tapping task in the t DCS group(P 〈 0.05). Thus, our study indicates that stimulation of the right hemisphere using t DCS can effectively improve visuomotor(tracking) task over simple repetitive(tapping) task.