提出一种单级式光伏并网逆变器的无电流检测最大功率点跟踪(maximum power point tracking,MPPT)方法。研究光伏组件、输入滤波电容和并网逆变器之间的能量耦合关系,通过使得连续两个并网功率周期的逆变器输出功率相等,通过计算输入滤...提出一种单级式光伏并网逆变器的无电流检测最大功率点跟踪(maximum power point tracking,MPPT)方法。研究光伏组件、输入滤波电容和并网逆变器之间的能量耦合关系,通过使得连续两个并网功率周期的逆变器输出功率相等,通过计算输入滤波电容电压的变化值,获得光伏组件输出功率的变化方向,实现了无电流检测的MPPT。划分光伏组件的3种工作区域,详细分析系统在各工作区域的稳定性,并给出具体的扰动准则。搭建200W的实验样机,实验结果充分证明了提出的控制方法的可行性和有效性。展开更多
We report a novel battery-less wireless current sensor node without an analog to digital converter (ADC). If a capacitor is charged using a current transformer (CT) and a rectifying circuit, the charging time depends ...We report a novel battery-less wireless current sensor node without an analog to digital converter (ADC). If a capacitor is charged using a current transformer (CT) and a rectifying circuit, the charging time depends on the current flowing through a power line. In the case that the node transmits data every time when voltage of the capacitor exceeds a threshold voltage, we can indirectly measure the current by measuring the transmission intervals. In this method, the circuit of the node can be simplified and power consumption for the wireless transmission can be decreased because the measured current data does not need to be included in the transmitted packet. However, the measurable range is about single digit because the transmission interval decreases suddenly as the current increases. In this work, we have ex- panded the range using one CT, one wireless transmission module, and two charging circuits that include different load resistors connected in series. The results indicated that the measurable range was from 0.5 A to 50 A.展开更多
文摘提出一种单级式光伏并网逆变器的无电流检测最大功率点跟踪(maximum power point tracking,MPPT)方法。研究光伏组件、输入滤波电容和并网逆变器之间的能量耦合关系,通过使得连续两个并网功率周期的逆变器输出功率相等,通过计算输入滤波电容电压的变化值,获得光伏组件输出功率的变化方向,实现了无电流检测的MPPT。划分光伏组件的3种工作区域,详细分析系统在各工作区域的稳定性,并给出具体的扰动准则。搭建200W的实验样机,实验结果充分证明了提出的控制方法的可行性和有效性。
文摘We report a novel battery-less wireless current sensor node without an analog to digital converter (ADC). If a capacitor is charged using a current transformer (CT) and a rectifying circuit, the charging time depends on the current flowing through a power line. In the case that the node transmits data every time when voltage of the capacitor exceeds a threshold voltage, we can indirectly measure the current by measuring the transmission intervals. In this method, the circuit of the node can be simplified and power consumption for the wireless transmission can be decreased because the measured current data does not need to be included in the transmitted packet. However, the measurable range is about single digit because the transmission interval decreases suddenly as the current increases. In this work, we have ex- panded the range using one CT, one wireless transmission module, and two charging circuits that include different load resistors connected in series. The results indicated that the measurable range was from 0.5 A to 50 A.