Understanding the microscopic structure and thermodynamic properties of electrode/electrolyte interfaces is central to the rational design of electric-double-layer capacitors(EDLCs).Whereas practical applications ofte...Understanding the microscopic structure and thermodynamic properties of electrode/electrolyte interfaces is central to the rational design of electric-double-layer capacitors(EDLCs).Whereas practical applications often entail electrodes with complicated pore structures,theoretical studies are mostly restricted to EDLCs of simple geometry such as planar or slit pores ignoring the curvature effects of the electrode surface.Significant gaps exist regarding the EDLC performance and the interfacial structure.Herein the classical density functional theory(CDFT)is used to study the capacitance and interfacial behavior of spherical electric double layers within a coarse-grained model.The capacitive performance is associated with electrode curvature,surface potential,and electrolyte concentration and can be correlated with a regression-tree(RT)model.The combination of CDFT with machine-learning methods provides a promising quantitative framework useful for the computational screening of porous electrodes and novel electrolytes.展开更多
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering a...Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applications and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent Uduct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these models may be employed to simulate the turbulent curved flows in engineering applications.展开更多
In this study, we present a new method to compute internal co-seismic deformations of a homoge- neous sphere, based on our previous approach (Dong et al. 2016). In practical numerical computations, we consider a str...In this study, we present a new method to compute internal co-seismic deformations of a homoge- neous sphere, based on our previous approach (Dong et al. 2016). In practical numerical computations, we consider a strike-slip point source as an example, and compute the vertical co-seismic displacement on different internal spherical surfaces (including the Earth surface). Numerical results show that the internal co-seismic deformations are generally larger than that on the Earth surface; especially, the maximum co-seismic displacement appears around the seismic source. The co-seismic displacements are opposite in sign for the areas over and beneath the position of the seismic source. The results also indicate that the curvature effect of the internal deformation is pretty large, and larger than that on the Earth surface. The results indicate that the dislocation theory for a sphere is necessary in computing internal co-seismic deformations.展开更多
Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects.The expe...Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects.The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters:jet Reynolds number from 27000 to 130000,relative nozzle to surface distance from 3.3 to 30,and relative surface curvature from 0.005 to 0.030.Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics.On one hand,an increase of relative nozzle to surface distance(increasing jet diameter in fact)enhances the average heat transfer around the surface for the same curved surface.On the other hand,the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter.Finally,experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect.This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces,which is of high importance to the design of the aircraft anti-icing system.展开更多
We demonstrate the regioselective growth of Au on Au nanobipyramids,either with etching of the tips,uniform coating except the tips,or forming a single island on the axial tip or an island on the equatorial corner.Imp...We demonstrate the regioselective growth of Au on Au nanobipyramids,either with etching of the tips,uniform coating except the tips,or forming a single island on the axial tip or an island on the equatorial corner.Importantly,the regioselectivity not only arises from the local curvature,as suggested by the recent literature,but also critically depends on the extent of ligand coverage on the seed surface.It is important to consider the competitive growth together with the curvature−ligand interplay:when there are insufficient ligands,they bind preferentially to the sharp tip for high surface energy,so that the remaining growth materials are diverted elsewhere;when the bipyramid is fully covered by ligands,the growth then selectively occurs at the tips because of the larger gaps among the ligands there.Our results demonstrate the great potentials in the rational design and synthesis when constructing sophisticated hybrid structures for functional nanomaterials.展开更多
By modifying the Rodi assumption to take account of the influence of flow curvature, a new curvature modified algebraic stress model(CMASM) is de- veloped from the second moment closure in the generalized curvilinear ...By modifying the Rodi assumption to take account of the influence of flow curvature, a new curvature modified algebraic stress model(CMASM) is de- veloped from the second moment closure in the generalized curvilinear coordinate system. And the explicit form of this ASM, a new curvature modified nonlinear k-ε model (CMNKE), is derived in the orthogonal curvilinear coordinate system. This new nonlinear k-ε model is further validated by a numerical simulation of a two- dimensional U-type turnaround duct flow. The results show that the CMNKE can effectively capture the main characteristic of this curvature flow and simulate the damping effect of the shear stress by a convex curvature and the enhancing effect by a concave curvature. So, this model is a rational and effective simplification to the second moment closure.展开更多
Rehybridization of electronic orbitals in carbon nanotubes contains tilting angles of π orbital, electrons wavefunctions of π orbital and a orbital, degrees of hybridization, etc. In this paper, we have obtained ana...Rehybridization of electronic orbitals in carbon nanotubes contains tilting angles of π orbital, electrons wavefunctions of π orbital and a orbital, degrees of hybridization, etc. In this paper, we have obtained analytical formulas of tilting angle of π orbital relative to tube surface, electrons wavefunctions of π orbital and a orbital, degrees of hybridization, separately, as well as the numerical results.展开更多
This paper studies in detail the electronic properties of the semimetallic single-walled carbon nanotubes by applying the symmetry-adapted tight-binding model. It is found that the hybridization of π-σ states caused...This paper studies in detail the electronic properties of the semimetallic single-walled carbon nanotubes by applying the symmetry-adapted tight-binding model. It is found that the hybridization of π-σ states caused by the curvature produces an energy gap at the vicinity of the Fermi level. Such effects are obvious for the small zigzag and chiral single-walled carbon nanotubes. The energy gaps decrease as the diameters and the chiral angles of the tubes increase, while the top of the valence band and the bottom of the conduction band of armchair tubes cross at the Fermi level. The numeral results agree well with the experimental results.展开更多
Here,we study the quantum coherence of N-partite Greenberger-Horne-Zeilinger(GHZ)and W states in the multiverse consisting of N causally disconnected de Sitter spaces.Interestingly,N-partite coherence increases monoto...Here,we study the quantum coherence of N-partite Greenberger-Horne-Zeilinger(GHZ)and W states in the multiverse consisting of N causally disconnected de Sitter spaces.Interestingly,N-partite coherence increases monotonically with curvature,whereas the curvature effect destroys quantum entanglement and discord,indicating that the curvature effect is beneficial to quantum coherence and harmful to quantum correlations in the multiverse.We find that with an increase in n expanding de Sitter spaces,the N-partite coherence of the GHZ state increases monotonically for any curvature,whereas the quantum coherence of the W state decreases or increases monotonically depending on the curvature.We find a distribution relationship,which indicates that the correlated coherence of the N-partite W state is equal to the sum of all bipartite correlated coherence in the multiverse.Multipartite coherence exhibits unique properties in the multiverse,suggesting that it may provide some evidence for the existence of the multiverse.展开更多
Hydrocarbons are promising products for CO_(2)electroreduction(CRR)while is impeded by the low selectivity.Turning the curvature of the active site is an effective strategy to change the adsorption properties and furt...Hydrocarbons are promising products for CO_(2)electroreduction(CRR)while is impeded by the low selectivity.Turning the curvature of the active site is an effective strategy to change the adsorption properties and further regulate the product distribution and reactivity.Herein,we have designed a novel V single atom catalyst(SAC)based on rolled two-dimensional(2D)BC_(3)N_(2)substrate with different curvatures.The results have demonstrated that increased curvature can enhance the adsorption strength of CRR intermediates,which follows different mechanisms for systems with low and high curvature.This character eventually leads to the deviation away from the scaling line between Ead[CO]∼Ead[COOH]based on transition metals for V@2D-BC_(3)N_(2)systems.3-3 system is screened as the optimal candidate for hydrocarbons production due to the enhanced binding ability of adsorbates,which can increase the reactivity for hydrocarbons production and hinder the production of H2 and HCOOH simultaneously.展开更多
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial...In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.展开更多
The transition in the boundary-layer flow affects the hydrodynamic performances of hydraulic machineries,as the key components in the ship propulsion system.The shear stress transfer(SST)γ-Re_(θt) transition model i...The transition in the boundary-layer flow affects the hydrodynamic performances of hydraulic machineries,as the key components in the ship propulsion system.The shear stress transfer(SST)γ-Re_(θt) transition model is an important prediction tool in the boundary layer simulation for hydrofoils.The present paper improves the prediction accuracy of the SST γ-Re_(θt) model for the boundary layers along a curved hydrofoil.The SST γ-Re_(θt) transition model for the flows along a curved hydrofoil is improved by introducing a correction to the transition onset Reynolds number Reθt.First,the transition onset locations for the flows along the hydrofoils of different curvatures are obtained by the large eddy simulation and by using the SST γ-Re_(θt) model.Then,the transition onset Reynolds numbers Reθt in the SST γ-Re_(θt) model is modified to ensure that the predicted boundary layer parameters are consistent with the large eddy simulation(LES)results.The correlation function between the curvature ratio and the modified transition onset Reynolds number is obtained and subsequently used as a correction function in the original SST γ-Re_(θt) model.Three test cases are used to evaluate the performance of the improved SST γ-Re_(θt) model.For the NACA0035 hydrofoil with a large curvature,the predicted results obtained by using the improved SST γ-Re_(θt) model are quite consistent with the experimental data,which indicates the advantages of the improved model in predicting the boundary layer transition along a hydrofoil.In the test cases of the NACA0016 hydrofoil with a mild curvature and the NACA66(mod)-312 hydrofoil,the prediction results of the improved model are in good agreement with the experimental results in terms of the wake region and the boundary layer parameters,which indicates that the improved SST γ-Re_(θt) model can serve as a powerful tool in the design and the optimization of hydraulic machineries such as the waterjet pumps or the naval propellers.展开更多
We apply the Heyd-Scuseria-Ernzerhof hybrid functional calculation to study the(2, 3) nanotube codoped with various compositions of nitrogen and boron atoms. We find that the bandgaps and other properties of doped n...We apply the Heyd-Scuseria-Ernzerhof hybrid functional calculation to study the(2, 3) nanotube codoped with various compositions of nitrogen and boron atoms. We find that the bandgaps and other properties of doped nanotubes oscillate with the doped compositions. Our study should shed light on the understanding of the properties of doped small nanotubes. This might have potential in designing new nano electronic-devices.展开更多
基金sponsored by the National Natural Science Foundation of China(Nos.91834301,21908053,and 21808055)Shanghai Sailing Program(19YF1411700)financial support from the Fluid Interface Reactions,Structures and Transport(FIRST)Center,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Basic Energy Sciences。
文摘Understanding the microscopic structure and thermodynamic properties of electrode/electrolyte interfaces is central to the rational design of electric-double-layer capacitors(EDLCs).Whereas practical applications often entail electrodes with complicated pore structures,theoretical studies are mostly restricted to EDLCs of simple geometry such as planar or slit pores ignoring the curvature effects of the electrode surface.Significant gaps exist regarding the EDLC performance and the interfacial structure.Herein the classical density functional theory(CDFT)is used to study the capacitance and interfacial behavior of spherical electric double layers within a coarse-grained model.The capacitive performance is associated with electrode curvature,surface potential,and electrolyte concentration and can be correlated with a regression-tree(RT)model.The combination of CDFT with machine-learning methods provides a promising quantitative framework useful for the computational screening of porous electrodes and novel electrolytes.
文摘Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applications and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent Uduct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these models may be employed to simulate the turbulent curved flows in engineering applications.
基金supported financially by the National Natural Science Foundation of China (Nos.41331066,41604067 and 41474059)China Postdoctoral Science Foundation Funded Project (No.119103S268)+1 种基金CAS Key Study Program QYZDY-SSW-SYS003the CAS/CAFEA International Partnership Program for Creative Research Teams (No.KZZD-EW-TZ-19)
文摘In this study, we present a new method to compute internal co-seismic deformations of a homoge- neous sphere, based on our previous approach (Dong et al. 2016). In practical numerical computations, we consider a strike-slip point source as an example, and compute the vertical co-seismic displacement on different internal spherical surfaces (including the Earth surface). Numerical results show that the internal co-seismic deformations are generally larger than that on the Earth surface; especially, the maximum co-seismic displacement appears around the seismic source. The co-seismic displacements are opposite in sign for the areas over and beneath the position of the seismic source. The results also indicate that the curvature effect of the internal deformation is pretty large, and larger than that on the Earth surface. The results indicate that the dislocation theory for a sphere is necessary in computing internal co-seismic deformations.
基金supported by the National Natural Science Foundation of China(No.51206008)the EU Marie Curie Actions-International Incoming Fellowships(No.FP7PEOPLE-2013-IIF-626576)
文摘Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects.The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters:jet Reynolds number from 27000 to 130000,relative nozzle to surface distance from 3.3 to 30,and relative surface curvature from 0.005 to 0.030.Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics.On one hand,an increase of relative nozzle to surface distance(increasing jet diameter in fact)enhances the average heat transfer around the surface for the same curved surface.On the other hand,the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter.Finally,experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect.This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces,which is of high importance to the design of the aircraft anti-icing system.
基金support from the National Natural Science Foundation of China General Program(No.21673117,H.C.)Major Program(No.91956109,H.C.)+2 种基金Zhejiang Provincial Natural Science Foundation of China Major Program(No.2022XHSJJ002,H.C.)Jiangsu Science and Technology Plan(BK20211258)Start-up Fund from Westlake University.
文摘We demonstrate the regioselective growth of Au on Au nanobipyramids,either with etching of the tips,uniform coating except the tips,or forming a single island on the axial tip or an island on the equatorial corner.Importantly,the regioselectivity not only arises from the local curvature,as suggested by the recent literature,but also critically depends on the extent of ligand coverage on the seed surface.It is important to consider the competitive growth together with the curvature−ligand interplay:when there are insufficient ligands,they bind preferentially to the sharp tip for high surface energy,so that the remaining growth materials are diverted elsewhere;when the bipyramid is fully covered by ligands,the growth then selectively occurs at the tips because of the larger gaps among the ligands there.Our results demonstrate the great potentials in the rational design and synthesis when constructing sophisticated hybrid structures for functional nanomaterials.
基金The project supported by the National Natural Science Foundation of China (19725208)the National Climbing project of China
文摘By modifying the Rodi assumption to take account of the influence of flow curvature, a new curvature modified algebraic stress model(CMASM) is de- veloped from the second moment closure in the generalized curvilinear coordinate system. And the explicit form of this ASM, a new curvature modified nonlinear k-ε model (CMNKE), is derived in the orthogonal curvilinear coordinate system. This new nonlinear k-ε model is further validated by a numerical simulation of a two- dimensional U-type turnaround duct flow. The results show that the CMNKE can effectively capture the main characteristic of this curvature flow and simulate the damping effect of the shear stress by a convex curvature and the enhancing effect by a concave curvature. So, this model is a rational and effective simplification to the second moment closure.
基金Project supported by the Specialized Research Fund of Doctoral Program of Higher Education of China (Grant No 20030532008)
文摘Rehybridization of electronic orbitals in carbon nanotubes contains tilting angles of π orbital, electrons wavefunctions of π orbital and a orbital, degrees of hybridization, etc. In this paper, we have obtained analytical formulas of tilting angle of π orbital relative to tube surface, electrons wavefunctions of π orbital and a orbital, degrees of hybridization, separately, as well as the numerical results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10774184 and 10974015)the National Basic Research Program of China (973 Program) (Grant No. 2007CB815101)
文摘This paper studies in detail the electronic properties of the semimetallic single-walled carbon nanotubes by applying the symmetry-adapted tight-binding model. It is found that the hybridization of π-σ states caused by the curvature produces an energy gap at the vicinity of the Fermi level. Such effects are obvious for the small zigzag and chiral single-walled carbon nanotubes. The energy gaps decrease as the diameters and the chiral angles of the tubes increase, while the top of the valence band and the bottom of the conduction band of armchair tubes cross at the Fermi level. The numeral results agree well with the experimental results.
基金Supported by the National Natural Science Foundation of China(12205133,1217050862,LJKQZ20222315,JYTMS20231051)。
文摘Here,we study the quantum coherence of N-partite Greenberger-Horne-Zeilinger(GHZ)and W states in the multiverse consisting of N causally disconnected de Sitter spaces.Interestingly,N-partite coherence increases monotonically with curvature,whereas the curvature effect destroys quantum entanglement and discord,indicating that the curvature effect is beneficial to quantum coherence and harmful to quantum correlations in the multiverse.We find that with an increase in n expanding de Sitter spaces,the N-partite coherence of the GHZ state increases monotonically for any curvature,whereas the quantum coherence of the W state decreases or increases monotonically depending on the curvature.We find a distribution relationship,which indicates that the correlated coherence of the N-partite W state is equal to the sum of all bipartite correlated coherence in the multiverse.Multipartite coherence exhibits unique properties in the multiverse,suggesting that it may provide some evidence for the existence of the multiverse.
基金supported by the National Natural Science Foundation of China(No.21603109)the Henan Joint Fund of the National Natural Science Foundation of China(No.U1404216)+3 种基金the Special Fund of Tianshui Normal University,China(No.CXJ2020-08)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.20JK0676)supported by Natural Science Basic Research Program of Shanxi(Nos.2022JQ-108,2022JQ-096)In addition,this work was also partially supported by the Postgraduate Research Opportunities Program of HZWTECH(No.HZWTECH-PROP).
文摘Hydrocarbons are promising products for CO_(2)electroreduction(CRR)while is impeded by the low selectivity.Turning the curvature of the active site is an effective strategy to change the adsorption properties and further regulate the product distribution and reactivity.Herein,we have designed a novel V single atom catalyst(SAC)based on rolled two-dimensional(2D)BC_(3)N_(2)substrate with different curvatures.The results have demonstrated that increased curvature can enhance the adsorption strength of CRR intermediates,which follows different mechanisms for systems with low and high curvature.This character eventually leads to the deviation away from the scaling line between Ead[CO]∼Ead[COOH]based on transition metals for V@2D-BC_(3)N_(2)systems.3-3 system is screened as the optimal candidate for hydrocarbons production due to the enhanced binding ability of adsorbates,which can increase the reactivity for hydrocarbons production and hinder the production of H2 and HCOOH simultaneously.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172069,11472082)
文摘In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
基金Projects supported by the National Science Foundation of China(Grant Nos.51836010,51779258 and 51839001)This work was supported by the Nature Science Foundation of Beijing(Grant No.3182018)the China Scholarship Council(CSC)Fund(Grant No.201806350195).
文摘The transition in the boundary-layer flow affects the hydrodynamic performances of hydraulic machineries,as the key components in the ship propulsion system.The shear stress transfer(SST)γ-Re_(θt) transition model is an important prediction tool in the boundary layer simulation for hydrofoils.The present paper improves the prediction accuracy of the SST γ-Re_(θt) model for the boundary layers along a curved hydrofoil.The SST γ-Re_(θt) transition model for the flows along a curved hydrofoil is improved by introducing a correction to the transition onset Reynolds number Reθt.First,the transition onset locations for the flows along the hydrofoils of different curvatures are obtained by the large eddy simulation and by using the SST γ-Re_(θt) model.Then,the transition onset Reynolds numbers Reθt in the SST γ-Re_(θt) model is modified to ensure that the predicted boundary layer parameters are consistent with the large eddy simulation(LES)results.The correlation function between the curvature ratio and the modified transition onset Reynolds number is obtained and subsequently used as a correction function in the original SST γ-Re_(θt) model.Three test cases are used to evaluate the performance of the improved SST γ-Re_(θt) model.For the NACA0035 hydrofoil with a large curvature,the predicted results obtained by using the improved SST γ-Re_(θt) model are quite consistent with the experimental data,which indicates the advantages of the improved model in predicting the boundary layer transition along a hydrofoil.In the test cases of the NACA0016 hydrofoil with a mild curvature and the NACA66(mod)-312 hydrofoil,the prediction results of the improved model are in good agreement with the experimental results in terms of the wake region and the boundary layer parameters,which indicates that the improved SST γ-Re_(θt) model can serve as a powerful tool in the design and the optimization of hydraulic machineries such as the waterjet pumps or the naval propellers.
文摘We apply the Heyd-Scuseria-Ernzerhof hybrid functional calculation to study the(2, 3) nanotube codoped with various compositions of nitrogen and boron atoms. We find that the bandgaps and other properties of doped nanotubes oscillate with the doped compositions. Our study should shed light on the understanding of the properties of doped small nanotubes. This might have potential in designing new nano electronic-devices.