To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based...To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.展开更多
For surface runoff estimation in the Soil and Water Assessment Tool(SWAT)model,the curve number(CN)procedure is commonly adopted to calculate surface runoff by dynamically updating CN values based on antecedent soil m...For surface runoff estimation in the Soil and Water Assessment Tool(SWAT)model,the curve number(CN)procedure is commonly adopted to calculate surface runoff by dynamically updating CN values based on antecedent soil moisture condition(SCSI)in field.From SWAT2005 and onward,an alternative approach has become available to apply the CN method by relating the runoff potential to daily evapotranspiration(SCSII).While improved runoff prediction with SCSII has been reported in several case studies,few investigations have been made on its influence to water quality output or on the model uncertainty associated with the SCSII method.The objectives of the research were:(1)to quantify the improvements in hydrologic and water quality predictions obtained through different surface runoff estimation techniques;and(2)to examine how model uncertainty is affected by combining different surface runoff estimation techniques within SWAT using Bayesian model averaging(BMA).Applications of BMA provide an alternative approach to investigate the nature of structural uncertainty associated with both CN methods.Results showed that SCSII and BMA associated approaches exhibit improved performance in both discharge and total NO3 predictions compared to SCSI.In addition,the application of BMA has a positive effect on finding well performed solutions in the multi-dimensional parameter space,but the predictive uncertainty is not evidently reduced or enhanced.Therefore,we recommend additional future SWAT calibration/validation research with an emphasis on the impact of SCSII on the prediction of other pollutants.展开更多
基金funded by the National Natural Science Foundation of China (Grants No.51278239)
文摘To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.
基金This study was supported in part by the US DA-National Institute of Food and Agriculture grants 2007-51130-03876,2009-51130-06038the Research Program for Agricultural Science&Technology Development(Project No.PJ008566)National Academy of Agricultural Science,Rural Development Administration,Republic of Korea,and the USDA-NRCS Conservation Effects Assessment Project(CEAP)-Wildlife and Cropland components.
文摘For surface runoff estimation in the Soil and Water Assessment Tool(SWAT)model,the curve number(CN)procedure is commonly adopted to calculate surface runoff by dynamically updating CN values based on antecedent soil moisture condition(SCSI)in field.From SWAT2005 and onward,an alternative approach has become available to apply the CN method by relating the runoff potential to daily evapotranspiration(SCSII).While improved runoff prediction with SCSII has been reported in several case studies,few investigations have been made on its influence to water quality output or on the model uncertainty associated with the SCSII method.The objectives of the research were:(1)to quantify the improvements in hydrologic and water quality predictions obtained through different surface runoff estimation techniques;and(2)to examine how model uncertainty is affected by combining different surface runoff estimation techniques within SWAT using Bayesian model averaging(BMA).Applications of BMA provide an alternative approach to investigate the nature of structural uncertainty associated with both CN methods.Results showed that SCSII and BMA associated approaches exhibit improved performance in both discharge and total NO3 predictions compared to SCSI.In addition,the application of BMA has a positive effect on finding well performed solutions in the multi-dimensional parameter space,but the predictive uncertainty is not evidently reduced or enhanced.Therefore,we recommend additional future SWAT calibration/validation research with an emphasis on the impact of SCSII on the prediction of other pollutants.