In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the alg...In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the algorithms of elimination hiddle line, the process to display and the primiples to produce the shaded curved surface. Based on all the above, a freedom surface modeling system (FSMS) is designed and some examples developed on FSMS are verified and analyzed.展开更多
A new method for design of turbomachinery blades is presented. The parameters of a compressor blade are created from the Computational Fluid Dynamics (CFD) software CFX-BladeGen, and are inputted to the Computer Aid...A new method for design of turbomachinery blades is presented. The parameters of a compressor blade are created from the Computational Fluid Dynamics (CFD) software CFX-BladeGen, and are inputted to the Computer Aided Design (CAD) software UG for building a curve surface model to create an entity model in UG. The result shows that the blade model is favorable from the entity effect and reflection analysis and the model process is useful for the CAD model creation of turbomachinery blades.展开更多
文摘In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the algorithms of elimination hiddle line, the process to display and the primiples to produce the shaded curved surface. Based on all the above, a freedom surface modeling system (FSMS) is designed and some examples developed on FSMS are verified and analyzed.
文摘A new method for design of turbomachinery blades is presented. The parameters of a compressor blade are created from the Computational Fluid Dynamics (CFD) software CFX-BladeGen, and are inputted to the Computer Aided Design (CAD) software UG for building a curve surface model to create an entity model in UG. The result shows that the blade model is favorable from the entity effect and reflection analysis and the model process is useful for the CAD model creation of turbomachinery blades.