The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the sy...The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the system's vibration characteristics could be established by its simplified dynamic analysis model,making it convenient for providing a reference to the optimization of design and safety analysis.A double-mass six-degree-of-freedom model for curved girder bridges with isolation bearings installed at the top of the bridge piers is built and a simplified analysis method for the vibration characteristics of the system is provided.Combined with the Matlab programming,the influences of radius of curvature,central angle,bridge deck width and damping ratio of the isolation layer and circular frequency of the isolation layer of isolated curved girder bridges on the pseudo-undamped natural circular frequency(called pseudo-frequency for short)and system damping ratio are systematically analyzed,and the sensitivity of vibration characteristics of isolated curved girder bridges is studied.The results show that the vibration characteristics of isolated curved girder bridges can be reflected well with this simplified model and calculation method.The pseudo-frequency of curved girder and system damping ratios increases with the increase of the isolation layer.The third-order vibration characteristic is more sensitive to the parameters of a curved girder,and the first-order vibration characteristic is sensitive to both central angle and radius of curvature to some extent while insensitive to the width of the bridge deck.Furthermore,the second-order vibration characteristic is not sensitive to the parameters of a curved girder.展开更多
The structure of a long curved girder bridge is represented with a three-dimensional curved finite element model. Each 4-axle ~vehicle is modeled by a dynamic system of 35 degrees of freedom. The random irregularities...The structure of a long curved girder bridge is represented with a three-dimensional curved finite element model. Each 4-axle ~vehicle is modeled by a dynamic system of 35 degrees of freedom. The random irregularities of the track are generated from a power spectral density function under the given track condition. The dynamic interaction between the bridge and train is realized through the contact forces between the wheels and track. Then based on these models, the coupled equations of motion are solved by applying the time-integration and iteration techniques to the coupled system. The proposed formulation and the associated computer program are then applied to a real curved girder bridge. The dynamic responses of the bridge-vehicle system and the derailments and offload factors related to the riding and running safeties of vehicles are computed. The results show that the formulation presented in this paper can well predict dynamic behaviors of both bridge and train with reasonable computation efforts.展开更多
The maximum seismic response of curved bridge is significantly related to the input angle of designated earthquake. Owing to structure irregularities, bridge reactions result from the interaction between the moment an...The maximum seismic response of curved bridge is significantly related to the input angle of designated earthquake. Owing to structure irregularities, bridge reactions result from the interaction between the moment and torsion forces. Based on the solving of the seismic response of structure excited by a one-way earthquake input, a uniform expression of the unfavorable angle of the earthquake input was derived, and the corresponding maximum response of structure was determined. Considering the orthotropic and skewed dual- directional earthquake input manners, the most unfavorable angles for the two cases were also derived, respectively. Furthermore, a series finite element models were built to analyze the multi-component seismic responses by examining an example of curved girder bridge considering the variation of curvature radius and the bearings arrangement. The seismic responses of the case bridges, were excited by earthquakes at different input angles, and were calculated and analyzed using a response spectrum method. The input angles of earthquake excitation were progressively increased. From the analysis and comparison based on the calculation results mentioned above, the most unfavorable angle of earthquake excitation corresponding to the maximum seismic response of the curved bridge could be determined. It was shown that the most unfavorable angles of earthquake input resulted from the different response combination methods were essentially coherent.展开更多
This paper deeply analyses the influence of different local tectonic on stress performance of spatial curved steel box Girder Bridge, using the finite element analysis software to establish space finite element model ...This paper deeply analyses the influence of different local tectonic on stress performance of spatial curved steel box Girder Bridge, using the finite element analysis software to establish space finite element model of this bridge, calculation and analysis were made on the bridge of the strength, stiffness. It has certain reference value for guiding engineering design, have a good foundation for the mechanical properties and stability of linear and nonlinear further study of curved steel box girder.展开更多
In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton princip...In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.展开更多
For multi-cell curve box girder, the finite strip governing equation was derived on the basis of Novozhilov theory and orthogonal property of harmonious function series. Dynamic Bayesian error function of mechanical p...For multi-cell curve box girder, the finite strip governing equation was derived on the basis of Novozhilov theory and orthogonal property of harmonious function series. Dynamic Bayesian error function of mechanical parameters of multi-cell curve box girder was achieved with Bayesian statistical theory. The corresponding formulas of dynamic Bayesian expectation and variance were obtained. After the one-dimensional optimization search method for the automatic determination of step length of the mechanical parameter was put forward, the optimization identification calculative formulas were also obtained by adopting conjugate gradient method. Then the steps of dynamic Bayesian identification of mechanical parameters of multi-cell curve box girder were stated in detail. Through analysis of a classic example, the dynamic Bayesian identification processes of mechanical parameters are steadily convergent to the true values, which proves that dynamic Bayesian theory and conjugate gradient theory are suitable for the identification calculation and the compiled procedure is correct. It is of significance that the foreknown information of mechanical parameters should be set with reliable practical engineering experiences instead of arbitrary selection.展开更多
In order to study the temperature distribution and the corresponding temperature effects on pre-stressed concrete(PC) curved box girder bridge in Shandong Province, this paper builds and adopts an automatic remote r...In order to study the temperature distribution and the corresponding temperature effects on pre-stressed concrete(PC) curved box girder bridge in Shandong Province, this paper builds and adopts an automatic remote real-time temperature collection system to collect temperature data on site, and further uses the software ANSYS for analysis. Based on the comparisons between the measured data and the simulation results, the following conclusions can be drawn: 1 Our temperature monitoring system is reliable; 2 The corresponding measured data of the web plate and flange plate exposed to the sun, vary more severely than that at other positions, so these plates need higher standard design and construction requirements; 3 In the cold wave where still is sunshine, the box girder temperature effect behaves as sine-like curve.展开更多
基金This work was financially supported by National Natural Science Foundation of China through Grant 51778471Scientific Project of Education Department of Jiangxi Province GJJ160620Science and Technology Project of Communications Department of Jiangxi Province 2016C0006.
文摘The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the system's vibration characteristics could be established by its simplified dynamic analysis model,making it convenient for providing a reference to the optimization of design and safety analysis.A double-mass six-degree-of-freedom model for curved girder bridges with isolation bearings installed at the top of the bridge piers is built and a simplified analysis method for the vibration characteristics of the system is provided.Combined with the Matlab programming,the influences of radius of curvature,central angle,bridge deck width and damping ratio of the isolation layer and circular frequency of the isolation layer of isolated curved girder bridges on the pseudo-undamped natural circular frequency(called pseudo-frequency for short)and system damping ratio are systematically analyzed,and the sensitivity of vibration characteristics of isolated curved girder bridges is studied.The results show that the vibration characteristics of isolated curved girder bridges can be reflected well with this simplified model and calculation method.The pseudo-frequency of curved girder and system damping ratios increases with the increase of the isolation layer.The third-order vibration characteristic is more sensitive to the parameters of a curved girder,and the first-order vibration characteristic is sensitive to both central angle and radius of curvature to some extent while insensitive to the width of the bridge deck.Furthermore,the second-order vibration characteristic is not sensitive to the parameters of a curved girder.
文摘The structure of a long curved girder bridge is represented with a three-dimensional curved finite element model. Each 4-axle ~vehicle is modeled by a dynamic system of 35 degrees of freedom. The random irregularities of the track are generated from a power spectral density function under the given track condition. The dynamic interaction between the bridge and train is realized through the contact forces between the wheels and track. Then based on these models, the coupled equations of motion are solved by applying the time-integration and iteration techniques to the coupled system. The proposed formulation and the associated computer program are then applied to a real curved girder bridge. The dynamic responses of the bridge-vehicle system and the derailments and offload factors related to the riding and running safeties of vehicles are computed. The results show that the formulation presented in this paper can well predict dynamic behaviors of both bridge and train with reasonable computation efforts.
基金supported by the National Natural Science Foundation of China(No.51378050)China Scholarship Council(No.201307095008)
文摘The maximum seismic response of curved bridge is significantly related to the input angle of designated earthquake. Owing to structure irregularities, bridge reactions result from the interaction between the moment and torsion forces. Based on the solving of the seismic response of structure excited by a one-way earthquake input, a uniform expression of the unfavorable angle of the earthquake input was derived, and the corresponding maximum response of structure was determined. Considering the orthotropic and skewed dual- directional earthquake input manners, the most unfavorable angles for the two cases were also derived, respectively. Furthermore, a series finite element models were built to analyze the multi-component seismic responses by examining an example of curved girder bridge considering the variation of curvature radius and the bearings arrangement. The seismic responses of the case bridges, were excited by earthquakes at different input angles, and were calculated and analyzed using a response spectrum method. The input angles of earthquake excitation were progressively increased. From the analysis and comparison based on the calculation results mentioned above, the most unfavorable angle of earthquake excitation corresponding to the maximum seismic response of the curved bridge could be determined. It was shown that the most unfavorable angles of earthquake input resulted from the different response combination methods were essentially coherent.
文摘This paper deeply analyses the influence of different local tectonic on stress performance of spatial curved steel box Girder Bridge, using the finite element analysis software to establish space finite element model of this bridge, calculation and analysis were made on the bridge of the strength, stiffness. It has certain reference value for guiding engineering design, have a good foundation for the mechanical properties and stability of linear and nonlinear further study of curved steel box girder.
基金the National Natural Science Foundation of China(No.10532070)
文摘In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772078 and 11072108)the Transportation Science Foundation of Jiangsu Province (Grant No. 09Y012)
文摘For multi-cell curve box girder, the finite strip governing equation was derived on the basis of Novozhilov theory and orthogonal property of harmonious function series. Dynamic Bayesian error function of mechanical parameters of multi-cell curve box girder was achieved with Bayesian statistical theory. The corresponding formulas of dynamic Bayesian expectation and variance were obtained. After the one-dimensional optimization search method for the automatic determination of step length of the mechanical parameter was put forward, the optimization identification calculative formulas were also obtained by adopting conjugate gradient method. Then the steps of dynamic Bayesian identification of mechanical parameters of multi-cell curve box girder were stated in detail. Through analysis of a classic example, the dynamic Bayesian identification processes of mechanical parameters are steadily convergent to the true values, which proves that dynamic Bayesian theory and conjugate gradient theory are suitable for the identification calculation and the compiled procedure is correct. It is of significance that the foreknown information of mechanical parameters should be set with reliable practical engineering experiences instead of arbitrary selection.
基金Supported by the China Postdoctoral Science Foundation(2013M531560)the Technology Innovation Plan in Traffic of Shandong Province(2012A15)the Science&Technology Development Projects of Shandong Province(2014GSF120015)
文摘In order to study the temperature distribution and the corresponding temperature effects on pre-stressed concrete(PC) curved box girder bridge in Shandong Province, this paper builds and adopts an automatic remote real-time temperature collection system to collect temperature data on site, and further uses the software ANSYS for analysis. Based on the comparisons between the measured data and the simulation results, the following conclusions can be drawn: 1 Our temperature monitoring system is reliable; 2 The corresponding measured data of the web plate and flange plate exposed to the sun, vary more severely than that at other positions, so these plates need higher standard design and construction requirements; 3 In the cold wave where still is sunshine, the box girder temperature effect behaves as sine-like curve.