期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate 被引量:4
1
作者 Jun YAN Chenguang ZHANG +3 位作者 Sixu HUO Xianghai CHAI Zhihui LIU Kun YAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第8期245-257,共13页
The anti-bird-strike performance of a lattice-material-infilled curved plate is investigated herein.Since automatically filling the curved structure by classical lattice material filling methods will cause a large num... The anti-bird-strike performance of a lattice-material-infilled curved plate is investigated herein.Since automatically filling the curved structure by classical lattice material filling methods will cause a large number of manufacturing defects,a space-dependent lattice material filling method for the curved plate is firstly proposed in this paper Next,using a face-centered cubic lattice,a lattice-material-infilled test piece with a hollow ratio of 40.8%is built.The test pieces are manufactured via additive manufacturing using titanium alloy.In bird-strike experimental tests,the test pieces are crashed against gelatin birds at an impact velocity of 200 m/s.Dynamic strain gauges are used to record the crash history and the results are discussed.Furthermore,a numerical analysis to simulate the bird-strike experiment is performed.The results from the experimental tests and numerical simulation agree well.This work shows that the lattice-material-infilled curved plate yields promising bird-strike resistance.Therefore,lattice-infilled materials are feasible for protecting aerospace components against bird-strike as well as for reducing the component weight. 展开更多
关键词 Bird-strike test Face-centered cubic lattice Infilled curved plate Lattice material Numerical simulation
原文传递
Three-dimensional oscillation of an acoustic microbubble between two rigid curved plates 被引量:1
2
作者 Kawa M.A.Manmi Imad A.Aziz +2 位作者 Arun Arjunan Rostam K.Saeed Abdolrahman Dadvand 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第5期1019-1034,共16页
Understanding the near boundary acoustic oscillation of microbubbles is critical for the effective design of ultrasonic biomedical devices and surface cleaning technologies.Accordingly,this study investigates the thre... Understanding the near boundary acoustic oscillation of microbubbles is critical for the effective design of ultrasonic biomedical devices and surface cleaning technologies.Accordingly,this study investigates the three-dimensional microbubble oscillation between two curved rigid plates experiencing a planar acoustic field using boundary integral method(BIM).The numerical model is validated via comparison with the nonlinear oscillation of the bubble governed by the modified Rayleigh-Plesset equation and with the axisymmetric model for an acoustic microbubble in infinite fluid domain.Then,the influence of the wave direction and horizontal standoff distance(h)on the bubble dynamics(including jet velocity,jet direction,centroid movement,total energy,and Kelvin impulse)were evaluated.It was concluded that the jet velocity,the maximum radius and the total energy of the bubble are not significantly influenced by the wave direction,while the jet direction and the high-pressure region depend strongly on it.More importantly,it was found that the jet velocity and the high-pressure region around the jet in acoustic bubble are drastically larger than their counterparts in the gas bubble. 展开更多
关键词 Acoustic microbubble bubble dynamics boundary integral method(BIM) two curved plates potential flow
原文传递
Stress-deformed state of cylindrical specimens during indirect tensile strength testing 被引量:5
3
作者 Levan Japaridze 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期509-518,共10页
In this study, the interaction between cylindrical specimen made ofhomogeneous, isotropic, and linearlyelastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed thatthe spec... In this study, the interaction between cylindrical specimen made ofhomogeneous, isotropic, and linearlyelastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed thatthe specimen is diametrically compressed by elliptic normal contact stresses. The frictional contactstresses between the specimen and platens are neglected. The analytical solution starts from the contactproblem of the loading jaws of any curvature and cylindrical specimen. The contact width, correspondingloading angle (2 ^0), and elliptical stresses obtained through solution of the contact problems are used asboundary conditions for a cylindrical specimen. The problem of the theory of elasticity for a cylinder issolved using Muskhelishvili's method. In this method, the displacements and stresses are represented interms of two analytical functions of a complex variable. In the main approaches, the nonlinear interactionbetween the loading bearing blocks and the specimen as well as the curvature of their surfacesand the elastic parameters of their materials are taken into account. Numerical examples are solved usingMATLAB to demonstrate the influence of deformability, curvature of the specimen and platens on thedistribution of the normal contact stresses as well as on the tensile and compressive stresses actingacross the loaded diameter. Derived equations also allow calculating the modulus of elasticity, totaldeformation modulus and creep parameters of the specimen material based on the experimental data ofradial contraction of the specimen. 展开更多
关键词 Brazilian test method Analytical solution Elliptical contact stresses curved bearing plates Tensile strength
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部