In this paper I have shown that squeezed modified quantum vacua have an effect on the background geometry by solving the semi-classical Einstein Field Equations in modified vacuum. The resultant geometry is similar to...In this paper I have shown that squeezed modified quantum vacua have an effect on the background geometry by solving the semi-classical Einstein Field Equations in modified vacuum. The resultant geometry is similar to (anti) de Sitter spacetime. This geometry could explain the change of causal structure—speed of light—in such vacua without violating diffeomorphism covariance or causality. The superluminal propagation of photons in Casimir vacuum is deduced from the effective electromagnetic action in the resultant curved geometry. Singling between different vacua is shown not to violate causality as well when the geometric effect on the null rays is considered, causing a refraction of those rays when traveling between unbounded and modified vacua.展开更多
We construct the quantum curve for the Baker-Akhiezer function of the orbifold Gromov-Witten theory of the weighted projective line P[r].Furthermore,we deduce the explicit bilinear Fermionic formula for the(stationary...We construct the quantum curve for the Baker-Akhiezer function of the orbifold Gromov-Witten theory of the weighted projective line P[r].Furthermore,we deduce the explicit bilinear Fermionic formula for the(stationary)Gromov-Witten potential via the lifting operator contructed from the Baker-Akhiezer function.展开更多
Some aspects of atom-field interactions in curved spacetime are reviewed.Of great interest are quantum radiative and entanglement processes arising out of Rindler and black hole spacetimes,which involve the role of Ha...Some aspects of atom-field interactions in curved spacetime are reviewed.Of great interest are quantum radiative and entanglement processes arising out of Rindler and black hole spacetimes,which involve the role of Hawking-Unruh and dynamical Casimir effects.Most of the discussion surrounds the radiative part of interactions.For this,we specifically reassess the conventional understandings of atomic radiative transitions and energy level shifts in curved spacetime.We also briefly outline the status quo of entanglement dynamics study in curved spacetime,and highlight literature related to some novel insights,like entanglement harvesting.On one hand,the study of the role played by spacetime curvature in quantum radiative and informational phenomena has implications for fundamental physics,notably the gravity-quantum interface.In particular,one examines the viability of the Equivalence Principle,which is at the heart of Einstein’s general theory of relativity.On the other hand,it can be instructive for manipulating quantum information and light propagation in arbitrary geometries.Some issues related to nonthermal effects of acceleration are also discussed.展开更多
The Hermitian surface momentum operator for a particle confined to a 2D curved surface spanned by orthogonal coordinates and embedded in 3D space is expressed as a symmetric expression in derivatives with respect to t...The Hermitian surface momentum operator for a particle confined to a 2D curved surface spanned by orthogonal coordinates and embedded in 3D space is expressed as a symmetric expression in derivatives with respect to the surface coordinates and so is manifestly along the surface. This is an alternative form to the one reported in the literature and usually named geometric momentum, which has a term proportional to the mean curvature along the direction normal to the surface, and so"apparently"not along the surface. The symmetric form of the momentum is the sum of two symmetric Hermitian operators along the two orthogonal directions defined by the surface coordinates.The centripetal force operator for a particle on the surface of a cylinder and a sphere is calculated by taking the time derivative of the momentum and is seen to be a symmetrization of the well-known classical expressions.展开更多
In our investigation,we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity,considering the Bonnor–Melvin-Lambda(BML)space-time back...In our investigation,we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity,considering the Bonnor–Melvin-Lambda(BML)space-time background.The BML solution is characterized by the magnetic field strength along the axis of the symmetry direction which is related to the cosmological constantΛand the topological parameterαof the geometry.The behavior of charge-free scalar particles described by the Klein–Gordon equation is investigated,utilizing two sets of rainbow functions:(i)f(χ)=■,h(χ)=1 and(ii)f(χ)=1,h(χ)=1+βХ/2.Here 0<(Х=■)≤1 with E representing the particle's energy,Ep is the Planck's energy,andβis the rainbow parameter.We obtain the approximate analytical solutions for the scalar particles and conduct a thorough analysis of the obtained results.Afterwards,we study the quantum dynamics of quantum oscillator fields within this BML space-time,employing the Klein–Gordon oscillator.Here also,we choose the same sets of rainbow functions and obtain the approximate eigenvalue solution for the oscillator fields.Notably,we demonstrate that the relativistic approximate energy profiles of charge-free scalar particles and oscillator fields get influenced by the topology of the geometry and the cosmological constant.Furthermore,we show that the energy profiles of scalar particles receive modifications from the rainbow parameter and the quantum oscillator fields by both the rainbow parameter and the frequency of oscillation.展开更多
We study spontaneous excitation of both a static detector (modelled by a two-level atom) immersed in a thermal bath and a uniformly accelerated one in the Minkowski vacuum interacting with a real massive scalar fiel...We study spontaneous excitation of both a static detector (modelled by a two-level atom) immersed in a thermal bath and a uniformly accelerated one in the Minkowski vacuum interacting with a real massive scalar field. Our results show that the mass of the scalar field manifests itself in the spontaneous excitation rate of the static detector in a thermal bath (and in vacuum) in the form of a selection rule for transitions among states of the detector. However, this selection rule disappears for the accelerated ones, demonstrating that an accelerated detector does not necessarily behave the same as an inertial one in a thermal bath. We lind the imprint left by the mass is the appearance of a grey-body factor in the spontaneous excitation and de-excitation rates, which maintains the detailed balance condition between them and thus ensures a thermal equilibrium at the Unruh temperature the same as that of the massless case. We also analyze quantitatively the effect of the mass on the rate of change of the detector's energy and find that when the mass is very small, it only induces a small negative correction. However, when it is very large, it then exponentially damps the rate, thus essentially forbidding any transitions among states of the detector.展开更多
We develop a covariant kinetic theory for massive fermions in a curved spacetime and an external electromagnetic field based on quantum field theory.We derive four coupled semi-classical kinetic equations accurate to ...We develop a covariant kinetic theory for massive fermions in a curved spacetime and an external electromagnetic field based on quantum field theory.We derive four coupled semi-classical kinetic equations accurate to O(ℏ),which describe the transports of particle number and spin degrees of freedom.The relationship with chiral kinetic theory is discussed.As an application,we study spin polarization in the presence of finite Riemann curvature and an electromagnetic field in both local and global equilibrium states.展开更多
We study adiabatic regularization of a coupling massless scalar field in general spatially flat Robertson-Walker(RW)spacetimes.For the conformal coupling,the 2nd-order regularized power spectrum and 4th-order regulari...We study adiabatic regularization of a coupling massless scalar field in general spatially flat Robertson-Walker(RW)spacetimes.For the conformal coupling,the 2nd-order regularized power spectrum and 4th-order regularized stress tensor are zero,and no trace anomaly exists in general RW spacetimes.This is a new result that exceeds those found in de Sitter space.For the minimal coupling,the regularized spectra are also zero in the radiationdominant and matter-dominant stages,as well as in de Sitter space.The vanishing of these adiabatically regularized spectra is further confirmed by direct regularization of the Green's function.For a general coupling and general RW spacetimes,the regularized spectra can be negative under the conventional prescription.At a higher order of regularization,the spectra will generally become positive,but will also acquire IR divergence,which is inevitable for a massless field.To avoid the IR divergence,the inside-horizon regularization is applied.Through these procedures,nonnegative UV-and IR-convergent power spectrum and spectral energy density will eventually be achieved.展开更多
In this paper,we study the Hawking radiation of Dirac particles via tunneling formalism from linearly supertranslated Schwarzschild black holes.We find that the radiation spectrum and the Hawking temperature remain th...In this paper,we study the Hawking radiation of Dirac particles via tunneling formalism from linearly supertranslated Schwarzschild black holes.We find that the radiation spectrum and the Hawking temperature remain the same as the one without soft hair.展开更多
文摘In this paper I have shown that squeezed modified quantum vacua have an effect on the background geometry by solving the semi-classical Einstein Field Equations in modified vacuum. The resultant geometry is similar to (anti) de Sitter spacetime. This geometry could explain the change of causal structure—speed of light—in such vacua without violating diffeomorphism covariance or causality. The superluminal propagation of photons in Casimir vacuum is deduced from the effective electromagnetic action in the resultant curved geometry. Singling between different vacua is shown not to violate causality as well when the geometric effect on the null rays is considered, causing a refraction of those rays when traveling between unbounded and modified vacua.
基金Supported by National Key R&DProgram of China(Grant No.2020YFE0204200)NSFC(Grant Nos.12225101,12061131014 and 11890660)。
文摘We construct the quantum curve for the Baker-Akhiezer function of the orbifold Gromov-Witten theory of the weighted projective line P[r].Furthermore,we deduce the explicit bilinear Fermionic formula for the(stationary)Gromov-Witten potential via the lifting operator contructed from the Baker-Akhiezer function.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.11974309)SMASB acknowledges financial support from China Scholarship Council at Zhejiang University.
文摘Some aspects of atom-field interactions in curved spacetime are reviewed.Of great interest are quantum radiative and entanglement processes arising out of Rindler and black hole spacetimes,which involve the role of Hawking-Unruh and dynamical Casimir effects.Most of the discussion surrounds the radiative part of interactions.For this,we specifically reassess the conventional understandings of atomic radiative transitions and energy level shifts in curved spacetime.We also briefly outline the status quo of entanglement dynamics study in curved spacetime,and highlight literature related to some novel insights,like entanglement harvesting.On one hand,the study of the role played by spacetime curvature in quantum radiative and informational phenomena has implications for fundamental physics,notably the gravity-quantum interface.In particular,one examines the viability of the Equivalence Principle,which is at the heart of Einstein’s general theory of relativity.On the other hand,it can be instructive for manipulating quantum information and light propagation in arbitrary geometries.Some issues related to nonthermal effects of acceleration are also discussed.
文摘The Hermitian surface momentum operator for a particle confined to a 2D curved surface spanned by orthogonal coordinates and embedded in 3D space is expressed as a symmetric expression in derivatives with respect to the surface coordinates and so is manifestly along the surface. This is an alternative form to the one reported in the literature and usually named geometric momentum, which has a term proportional to the mean curvature along the direction normal to the surface, and so"apparently"not along the surface. The symmetric form of the momentum is the sum of two symmetric Hermitian operators along the two orthogonal directions defined by the surface coordinates.The centripetal force operator for a particle on the surface of a cylinder and a sphere is calculated by taking the time derivative of the momentum and is seen to be a symmetrization of the well-known classical expressions.
文摘In our investigation,we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity,considering the Bonnor–Melvin-Lambda(BML)space-time background.The BML solution is characterized by the magnetic field strength along the axis of the symmetry direction which is related to the cosmological constantΛand the topological parameterαof the geometry.The behavior of charge-free scalar particles described by the Klein–Gordon equation is investigated,utilizing two sets of rainbow functions:(i)f(χ)=■,h(χ)=1 and(ii)f(χ)=1,h(χ)=1+βХ/2.Here 0<(Х=■)≤1 with E representing the particle's energy,Ep is the Planck's energy,andβis the rainbow parameter.We obtain the approximate analytical solutions for the scalar particles and conduct a thorough analysis of the obtained results.Afterwards,we study the quantum dynamics of quantum oscillator fields within this BML space-time,employing the Klein–Gordon oscillator.Here also,we choose the same sets of rainbow functions and obtain the approximate eigenvalue solution for the oscillator fields.Notably,we demonstrate that the relativistic approximate energy profiles of charge-free scalar particles and oscillator fields get influenced by the topology of the geometry and the cosmological constant.Furthermore,we show that the energy profiles of scalar particles receive modifications from the rainbow parameter and the quantum oscillator fields by both the rainbow parameter and the frequency of oscillation.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos. 11075083,10935013 and 11005013the Zhejiang Provincial Natural Science Foundation of China under Grant No. Z6100077+3 种基金the National Basic Research Program of China under Grant No. 2010CB832803the PCSIRT under Grant No. IRT0964the Research Foundation of Education Bureau of Hunan Province under Grant No. 10C0377Provincial Natural Science Foundation of China under Grant No. 11JJ700
文摘We study spontaneous excitation of both a static detector (modelled by a two-level atom) immersed in a thermal bath and a uniformly accelerated one in the Minkowski vacuum interacting with a real massive scalar field. Our results show that the mass of the scalar field manifests itself in the spontaneous excitation rate of the static detector in a thermal bath (and in vacuum) in the form of a selection rule for transitions among states of the detector. However, this selection rule disappears for the accelerated ones, demonstrating that an accelerated detector does not necessarily behave the same as an inertial one in a thermal bath. We lind the imprint left by the mass is the appearance of a grey-body factor in the spontaneous excitation and de-excitation rates, which maintains the detailed balance condition between them and thus ensures a thermal equilibrium at the Unruh temperature the same as that of the massless case. We also analyze quantitatively the effect of the mass on the rate of change of the detector's energy and find that when the mass is very small, it only induces a small negative correction. However, when it is very large, it then exponentially damps the rate, thus essentially forbidding any transitions among states of the detector.
基金X.-G.H.was supported by NSFC(11535012,11675041)K.M.was supported by the China Postdoctoral Science Foundation(2017M621345)。
文摘We develop a covariant kinetic theory for massive fermions in a curved spacetime and an external electromagnetic field based on quantum field theory.We derive four coupled semi-classical kinetic equations accurate to O(ℏ),which describe the transports of particle number and spin degrees of freedom.The relationship with chiral kinetic theory is discussed.As an application,we study spin polarization in the presence of finite Riemann curvature and an electromagnetic field in both local and global equilibrium states.
基金Supported by NSFC(11421303,11675165,11633001,11961131007)B.Wang is supported by CPSF(2019M662168)。
文摘We study adiabatic regularization of a coupling massless scalar field in general spatially flat Robertson-Walker(RW)spacetimes.For the conformal coupling,the 2nd-order regularized power spectrum and 4th-order regularized stress tensor are zero,and no trace anomaly exists in general RW spacetimes.This is a new result that exceeds those found in de Sitter space.For the minimal coupling,the regularized spectra are also zero in the radiationdominant and matter-dominant stages,as well as in de Sitter space.The vanishing of these adiabatically regularized spectra is further confirmed by direct regularization of the Green's function.For a general coupling and general RW spacetimes,the regularized spectra can be negative under the conventional prescription.At a higher order of regularization,the spectra will generally become positive,but will also acquire IR divergence,which is inevitable for a massless field.To avoid the IR divergence,the inside-horizon regularization is applied.Through these procedures,nonnegative UV-and IR-convergent power spectrum and spectral energy density will eventually be achieved.
基金supported in part by the National Natural Science Foundation of China under Grant No.11905156,No.11975164,No.11935009Natural Science Foundation of Tianjin under Grant No.20JCYBJC00910。
文摘In this paper,we study the Hawking radiation of Dirac particles via tunneling formalism from linearly supertranslated Schwarzschild black holes.We find that the radiation spectrum and the Hawking temperature remain the same as the one without soft hair.