A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The e...A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The exact C-property is investigated,and comparison with the standard finite difference WENO scheme is made.Theoretical derivation and numerical results show that the proposed finite difference WENO scheme can maintain the exact C-property on both stationarily and dynamically generalized coordinate systems.The Harten-Lax-van Leer type flux is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems,indicating smaller errors compared with the Lax-Friedrichs solver.In addition,we propose a positivity-preserving limiter on stationary meshes such that the scheme can preserve the non-negativity of the water height without loss of mass conservation.展开更多
Based on the high order essentially non-oscillatory(ENO)Lagrangian type scheme on quadrilateral meshes presented in our earlier work[3],in this paper we develop a third order conservative Lagrangian type scheme on cur...Based on the high order essentially non-oscillatory(ENO)Lagrangian type scheme on quadrilateral meshes presented in our earlier work[3],in this paper we develop a third order conservative Lagrangian type scheme on curvilinear meshes for solving the Euler equations of compressible gas dynamics.The main purpose of this work is to demonstrate our claim in[3]that the accuracy degeneracy phenomenon observed for the high order Lagrangian type scheme is due to the error from the quadrilateral mesh with straight-line edges,which restricts the accuracy of the resulting scheme to at most second order.The accuracy test given in this paper shows that the third order Lagrangian type scheme can actually obtain uniformly third order accuracy even on distorted meshes by using curvilinear meshes.Numerical examples are also presented to verify the performance of the third order scheme on curvilinear meshes in terms of resolution for discontinuities and non-oscillatory properties.展开更多
We investigate different techniques for fitting Bézier curves to surfaces in context of high-order curvilinear mesh generation. Starting from distance-based least-squares fitting we develop an incremental algorit...We investigate different techniques for fitting Bézier curves to surfaces in context of high-order curvilinear mesh generation. Starting from distance-based least-squares fitting we develop an incremental algorithm, which incorporates approximations of stretch and bending energy. In the process, the algorithm reduces the energy weight in favor of accuracy, leading to an optimized set of sampling points. This energy-minimizing fitting strategy is applied to analytically defined as well as triangulated surfaces. The results confirm that the proposed method straightens and shortens the curves efficiently. Moreover the method preserves the accuracy and convergence behavior of distance-based fitting. Preliminary application to surface mesh generation shows a remarkable improvement of patch quality in high curvature regions.展开更多
Explicit structure-preserving geometric particle-in-cell(PIC)algorithm in curvilinear orthogonal coordinate systems is developed.The work reported represents a further development of the structure-preserving geometric...Explicit structure-preserving geometric particle-in-cell(PIC)algorithm in curvilinear orthogonal coordinate systems is developed.The work reported represents a further development of the structure-preserving geometric PIC algorithm achieving the goal of practical applications in magnetic fusion research.The algorithm is constructed by discretizing the field theory for the system of charged particles and electromagnetic field using Whitney forms,discrete exterior calculus,and explicit non-canonical symplectic integration.In addition to the truncated infinitely dimensional symplectic structure,the algorithm preserves exactly many important physical symmetries and conservation laws,such as local energy conservation,gauge symmetry and the corresponding local charge conservation.As a result,the algorithm possesses the long-term accuracy and fidelity required for first-principles-based simulations of the multiscale tokamak physics.The algorithm has been implemented in the Sym PIC code,which is designed for highefficiency massively-parallel PIC simulations in modern clusters.The code has been applied to carry out whole-device 6 D kinetic simulation studies of tokamak physics.A self-consistent kinetic steady state for fusion plasma in the tokamak geometry is numerically found with a predominately diagonal and anisotropic pressure tensor.The state also admits a steady-state subsonic ion flow in the range of 10 km s-1,agreeing with experimental observations and analytical calculations Kinetic ballooning instability in the self-consistent kinetic steady state is simulated.It is shown that high-n ballooning modes have larger growth rates than low-n global modes,and in the nonlinear phase the modes saturate approximately in 5 ion transit times at the 2%level by the E×B flow generated by the instability.These results are consistent with early and recent electromagnetic gyrokinetic simulations.展开更多
In this paper, the Crank-Nicholson + component-consistent pressure correction method for the numerical solution of the unsteady incompressible Navier-Stokes equation of [1] on the rectangular half-Staggered mesh has b...In this paper, the Crank-Nicholson + component-consistent pressure correction method for the numerical solution of the unsteady incompressible Navier-Stokes equation of [1] on the rectangular half-Staggered mesh has been extended to the curvilinear half-Staggered mesh. The discrete projection, both for the projection step in the solution procedure and for the related differential-algebraic equations, has been carefully studied and verified. It is proved that the proposed method is also unconditionally (in t) nonlinearly stable on the curvilinear mesh, provided the mesh is not too skewed. It is seen that for problems with an outflow boundary, the half-Staggered mesh is especially advantageous. Results of preliminary numerical experiments support these claims.展开更多
This paper is concerned with the numerical solution of two-dimensional flow.The technique of boundary-fitted coordinate systems is used to overcome the difficulties resulting from the complicated shape of natural rive...This paper is concerned with the numerical solution of two-dimensional flow.The technique of boundary-fitted coordinate systems is used to overcome the difficulties resulting from the complicated shape of natural river boundaries; the method of fractional steps is used to solve the partial differential equations in the transformed plane; and the technique of moving boundary is used to deal with the river bed exposed to water surface. Comparison between computed and experimental data shows a satisfactory agreement.展开更多
Based on newly developed weight-based smoothness detectors and non-linear interpolations designed to capture discontinuities for the multiderivative com-bined dissipative compact scheme(MDCS),hybrid linear and nonline...Based on newly developed weight-based smoothness detectors and non-linear interpolations designed to capture discontinuities for the multiderivative com-bined dissipative compact scheme(MDCS),hybrid linear and nonlinear interpolations are proposed to form hybrid MDCS.These detectors are derived from the weights used for the nonlinear interpolations and can provide suitable switches between the linear and the nonlinear schemes to realize the characteristics for the hybrid MDCS of capturing discontinuities and maintaining high resolution in the region without large discontinuities.To save computational cost,the nonlinear scheme with characteris-tic decomposition is only applied in the detected discontinuities region by specially designed hybrid strategy.Typical tests show that the hybrid MDCS is capable of cap-turing discontinuities and maintaining high resolution power for the smooth region at the same time.With the satisfaction of the geometric conservative law(GCL),the MDCS is further applied on curvilinear mesh to present its promising capability of handling pragmatic simulations.展开更多
基金the National Natural Science Foundation of China(11901555,11871448,12001009).
文摘A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The exact C-property is investigated,and comparison with the standard finite difference WENO scheme is made.Theoretical derivation and numerical results show that the proposed finite difference WENO scheme can maintain the exact C-property on both stationarily and dynamically generalized coordinate systems.The Harten-Lax-van Leer type flux is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems,indicating smaller errors compared with the Lax-Friedrichs solver.In addition,we propose a positivity-preserving limiter on stationary meshes such that the scheme can preserve the non-negativity of the water height without loss of mass conservation.
基金The research of the first author is supported in part by NSFC grant 10572028Addi-tional support is provided by the National Basic Research Program of China under grant 2005CB321702+1 种基金by the Foundation of National Key Laboratory of Computational Physics under grant 9140C6902010603by the National Hi-Tech Inertial Confinement Fusion Committee of China.The research of the second author is supported in part by NSF grant DMS-0510345.
文摘Based on the high order essentially non-oscillatory(ENO)Lagrangian type scheme on quadrilateral meshes presented in our earlier work[3],in this paper we develop a third order conservative Lagrangian type scheme on curvilinear meshes for solving the Euler equations of compressible gas dynamics.The main purpose of this work is to demonstrate our claim in[3]that the accuracy degeneracy phenomenon observed for the high order Lagrangian type scheme is due to the error from the quadrilateral mesh with straight-line edges,which restricts the accuracy of the resulting scheme to at most second order.The accuracy test given in this paper shows that the third order Lagrangian type scheme can actually obtain uniformly third order accuracy even on distorted meshes by using curvilinear meshes.Numerical examples are also presented to verify the performance of the third order scheme on curvilinear meshes in terms of resolution for discontinuities and non-oscillatory properties.
基金the funding of this project by the German Research Foundation(DFG,STI 157/4-1).
文摘We investigate different techniques for fitting Bézier curves to surfaces in context of high-order curvilinear mesh generation. Starting from distance-based least-squares fitting we develop an incremental algorithm, which incorporates approximations of stretch and bending energy. In the process, the algorithm reduces the energy weight in favor of accuracy, leading to an optimized set of sampling points. This energy-minimizing fitting strategy is applied to analytically defined as well as triangulated surfaces. The results confirm that the proposed method straightens and shortens the curves efficiently. Moreover the method preserves the accuracy and convergence behavior of distance-based fitting. Preliminary application to surface mesh generation shows a remarkable improvement of patch quality in high curvature regions.
基金supported by the the National MCF Energy R&D Program(No.2018YFE0304100)National Key Research and Development Program(Nos.2016YFA0400600,2016YFA0400601 and 2016YFA0400602)+1 种基金National Natural Science Foundation of China(Nos.11905220 and 11805273)supported by the U.S.Department of Energy(DE-AC02-09CH11466)。
文摘Explicit structure-preserving geometric particle-in-cell(PIC)algorithm in curvilinear orthogonal coordinate systems is developed.The work reported represents a further development of the structure-preserving geometric PIC algorithm achieving the goal of practical applications in magnetic fusion research.The algorithm is constructed by discretizing the field theory for the system of charged particles and electromagnetic field using Whitney forms,discrete exterior calculus,and explicit non-canonical symplectic integration.In addition to the truncated infinitely dimensional symplectic structure,the algorithm preserves exactly many important physical symmetries and conservation laws,such as local energy conservation,gauge symmetry and the corresponding local charge conservation.As a result,the algorithm possesses the long-term accuracy and fidelity required for first-principles-based simulations of the multiscale tokamak physics.The algorithm has been implemented in the Sym PIC code,which is designed for highefficiency massively-parallel PIC simulations in modern clusters.The code has been applied to carry out whole-device 6 D kinetic simulation studies of tokamak physics.A self-consistent kinetic steady state for fusion plasma in the tokamak geometry is numerically found with a predominately diagonal and anisotropic pressure tensor.The state also admits a steady-state subsonic ion flow in the range of 10 km s-1,agreeing with experimental observations and analytical calculations Kinetic ballooning instability in the self-consistent kinetic steady state is simulated.It is shown that high-n ballooning modes have larger growth rates than low-n global modes,and in the nonlinear phase the modes saturate approximately in 5 ion transit times at the 2%level by the E×B flow generated by the instability.These results are consistent with early and recent electromagnetic gyrokinetic simulations.
基金Supported by Projects 19472068 and 19772056 of the National Natural Science Foundation ofChina and the Laboratory of Scientifi
文摘In this paper, the Crank-Nicholson + component-consistent pressure correction method for the numerical solution of the unsteady incompressible Navier-Stokes equation of [1] on the rectangular half-Staggered mesh has been extended to the curvilinear half-Staggered mesh. The discrete projection, both for the projection step in the solution procedure and for the related differential-algebraic equations, has been carefully studied and verified. It is proved that the proposed method is also unconditionally (in t) nonlinearly stable on the curvilinear mesh, provided the mesh is not too skewed. It is seen that for problems with an outflow boundary, the half-Staggered mesh is especially advantageous. Results of preliminary numerical experiments support these claims.
文摘This paper is concerned with the numerical solution of two-dimensional flow.The technique of boundary-fitted coordinate systems is used to overcome the difficulties resulting from the complicated shape of natural river boundaries; the method of fractional steps is used to solve the partial differential equations in the transformed plane; and the technique of moving boundary is used to deal with the river bed exposed to water surface. Comparison between computed and experimental data shows a satisfactory agreement.
基金supported by the National Key Research and Development Plan(grant No.2016YFB0200700)the National Natural Science Foundation of China(grant Nos.11372342,11572342,and 11672321)the National Key Project GJXM92579.
文摘Based on newly developed weight-based smoothness detectors and non-linear interpolations designed to capture discontinuities for the multiderivative com-bined dissipative compact scheme(MDCS),hybrid linear and nonlinear interpolations are proposed to form hybrid MDCS.These detectors are derived from the weights used for the nonlinear interpolations and can provide suitable switches between the linear and the nonlinear schemes to realize the characteristics for the hybrid MDCS of capturing discontinuities and maintaining high resolution in the region without large discontinuities.To save computational cost,the nonlinear scheme with characteris-tic decomposition is only applied in the detected discontinuities region by specially designed hybrid strategy.Typical tests show that the hybrid MDCS is capable of cap-turing discontinuities and maintaining high resolution power for the smooth region at the same time.With the satisfaction of the geometric conservative law(GCL),the MDCS is further applied on curvilinear mesh to present its promising capability of handling pragmatic simulations.