Customer attrition in the banking industry occurs when consumers quit using the goods and services offered by the bank for some time and,after that,end their connection with the bank.Therefore,customer retention is es...Customer attrition in the banking industry occurs when consumers quit using the goods and services offered by the bank for some time and,after that,end their connection with the bank.Therefore,customer retention is essential in today’s extremely competitive banking market.Additionally,having a solid customer base helps attract new consumers by fostering confidence and a referral from a current clientele.These factors make reducing client attrition a crucial step that banks must pursue.In our research,we aim to examine bank data and forecast which users will most likely discontinue using the bank’s services and become paying customers.We use various machine learning algorithms to analyze the data and show comparative analysis on different evaluation metrics.In addition,we developed a Data Visualization RShiny app for data science and management regarding customer churn analysis.Analyzing this data will help the bank indicate the trend and then try to retain customers on the verge of attrition.展开更多
The electricity retail markets are evolving toward more competitive and customer-oriented. The deployment of smart meters and a wealth of new technologies create customers' eagerness for taking control of their elect...The electricity retail markets are evolving toward more competitive and customer-oriented. The deployment of smart meters and a wealth of new technologies create customers' eagerness for taking control of their electricity consumption. By being better-informed about the energy usage, people are encouraged to switch deals among existing suppliers or move to a new energy provider. Moreover, as customers are more socially interconnected, the Internet portals and social media become a place for discussion, comparison, and evaluation of the available offers. Unfortunately, in case of the energy sector there is a lack of understanding that such information, when taken into account and properly analyzed, can be a completely new and a powerful source of competitive advantage. In the paper, we introduce a solution that the use of quasi real-time automated sentiment analysis on the energy suppliers and the relevant aspects of their offers may enable energy companies to adapt quickly to changing circumstances, prevent potential customer churn, and harness new business opportunities.展开更多
文摘Customer attrition in the banking industry occurs when consumers quit using the goods and services offered by the bank for some time and,after that,end their connection with the bank.Therefore,customer retention is essential in today’s extremely competitive banking market.Additionally,having a solid customer base helps attract new consumers by fostering confidence and a referral from a current clientele.These factors make reducing client attrition a crucial step that banks must pursue.In our research,we aim to examine bank data and forecast which users will most likely discontinue using the bank’s services and become paying customers.We use various machine learning algorithms to analyze the data and show comparative analysis on different evaluation metrics.In addition,we developed a Data Visualization RShiny app for data science and management regarding customer churn analysis.Analyzing this data will help the bank indicate the trend and then try to retain customers on the verge of attrition.
基金supported by the HPI Future SOC Lab and Tableau Software
文摘The electricity retail markets are evolving toward more competitive and customer-oriented. The deployment of smart meters and a wealth of new technologies create customers' eagerness for taking control of their electricity consumption. By being better-informed about the energy usage, people are encouraged to switch deals among existing suppliers or move to a new energy provider. Moreover, as customers are more socially interconnected, the Internet portals and social media become a place for discussion, comparison, and evaluation of the available offers. Unfortunately, in case of the energy sector there is a lack of understanding that such information, when taken into account and properly analyzed, can be a completely new and a powerful source of competitive advantage. In the paper, we introduce a solution that the use of quasi real-time automated sentiment analysis on the energy suppliers and the relevant aspects of their offers may enable energy companies to adapt quickly to changing circumstances, prevent potential customer churn, and harness new business opportunities.