期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
Experimental study on the influences of cutter geometry and material on scraper wear during shield TBM tunnelling in abrasive sandy ground
1
作者 Shaohui Tang Xiaoping Zhang +3 位作者 Quansheng Liu Qi Zhang Xinfang Li Haojie Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期410-425,共16页
When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on sc... When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on scraper wear remains unclear due to the lack of a reliable test method.Geometry and material optimisation are often based on subjective experience,which is unfavourable for improving scraper geological adaptability.In the present study,the newly developed WHU-SAT soil abrasion test was used to evaluate the variation in scraper wear with cutter geometry,material and hardness.The influence mechanism of cutter parameters on scraper wear has been revealed according to the scratch characteristics of the scraper surface.Cutter geometry and material parameters have been optimised to reduce scraper wear.The results indicate that the variation in scraper wear with cutter geometry is related to the cutting resistance,frictional resistance and stress distribution.An appropriate increase in the front angle(or back angle)reduces the cutting resistance(or frictional resistance),while an excessive increase in the front angle(or back angle)reduces the edge angle and causes stress concentration.The optimal front angle,back angle and edge angle for quartz sand samples areα=25°,β=10°andγ=55°,respectively.The wear resistance of the modelled scrapers made of different metal materials is related to the chemical elements and microstructure.The wear resistances of the modelled scrapers made of 45#,06Cr19Ni10,42CrMo4 and 40CrNiMoA are 0.569,0.661,0.691 and 0.728 times those made of WC-Co,respectively.When the alloy hardness is less than 47 HRC(or greater than 58 HRC),scraper wear decreases slowly with increasing alloy hardness as the scratch depth of the particle asperity on the metal surface stabilizes at a high(or low)level.However,when the alloy hardness is between 47 HRC and 58 HRC,scraper wear decreases rapidly with increasing alloy hardness as the scratch depth transitions from high to low levels.The sensitive hardness interval and recommended hardness interval for quartz sand are[47,58]and[58,62],respectively.The present study provides a reference for optimising scraper parameters and improving cutterhead adaptability in abrasive sandy ground tunnelling. 展开更多
关键词 Shield TBM Scraper wear cutter shape Metal material Alloy hardness
下载PDF
Research on the design method for uniform wear of shield cutters in sand-pebble strata
2
作者 Jinxun Zhang Bo Li +4 位作者 Guihe Wang Yusheng Jiang Hua Jiang Minglun Yin Zhengyang Sun 《Deep Underground Science and Engineering》 2024年第2期216-230,共15页
During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ... During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata. 展开更多
关键词 cutter wear EDEM model long-distance shield driving sand-pebble stratum shield tunnel uniform wear design method
下载PDF
Mechanical model of breaking rock and force characteristic of disc cutter 被引量:23
3
作者 夏毅敏 欧阳涛 +1 位作者 张新明 罗德志 《Journal of Central South University》 SCIE EI CAS 2012年第7期1846-1858,共13页
According to the cutting characteristics of progressive spiral movement by rotary cutting of the disc cutter, using the broken theory of interaction of compression and shearing, the three-axis force rotary cutting mec... According to the cutting characteristics of progressive spiral movement by rotary cutting of the disc cutter, using the broken theory of interaction of compression and shearing, the three-axis force rotary cutting mechanical model of disc cutter was established and the influence of installation radius, the phase difference and the cutter space on the mechanics of disc cutter were analyzed. The results show that on the same radial line of tunneling interface, the boring distance of cutting tools installed on a different radius is not equal. The cutting radial line of tunneling interface is a polyline and its height is determined by phase angle and penetration of cutting tools. Both phase difference and the installation radius between adjacent disc cutters have little effect on the vertical force and rolling force, but increase with the increase in cutter spacing. In addition, when increasing phase difference and cutter space bilaterally, and reducing installation radius simultaneously, the lateral force would be improved. Related results have been verified onl O0 t rotary tool cutting test platform. 展开更多
关键词 mechanical model phase angle installation radius cutter space disc cutter
下载PDF
Design Theory of Full Face Rock Tunnel Boring Machine Transition Cutter Edge Angle and Its Application 被引量:25
4
作者 ZHANG Zhaohuang MENG Liang SUN Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期541-546,共6页
At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of... At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutterhead gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased. 展开更多
关键词 disc cutter three-dimensional mode edge angle full face rock tunnel boring machine (TBM) flat-face cutterhead
下载PDF
Rock deformation equations and application to the study on slantingly installed disc cutter 被引量:17
5
作者 Zhao-Huang Zhang Liang Meng Fei Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第4期540-546,共7页
At present the mechanical model of the interac- tion between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line... At present the mechanical model of the interac- tion between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line with the actual rock-breaking movement of the disc cutter and impedes to some extent the research on the rock-breaking mechanism, wear mechanism and design theory. Therefore, our study focuses on the interaction between the slantingly installed disc cutter and rock, developing a model in accordance with the actual rock-breaking movement. Displacement equations are established through an analysis of the velocity vector at the rock-breaking point of the disc cutter blade; the func- tional relationship between the displacement parameters at the rock-breaking point and its rectangular coordinates is established through an analysis of micro-displacement vectors at the rock-breaking point, thus leading to the geometric equations of rock deformation caused by the slantingly installed disc cutter. Considering the basically linear relationship between the cutting force of disc cutters and the rock deformation before and after the leap break of rock, we express the constitutive relations of rock deformation as generalized Hooke's law and analyze the effect of the slanting installa- tion angle of disc cutters on the rock-breaking force. This will, as we hope, make groundbreaking contributions to the development of the design theory and installation practice of TBM. 展开更多
关键词 TBM Disc cutter· Geometric equation Slant-ingly installed Rock-breaking
下载PDF
Fragmentation Energy-Saving Theory of Full Face Rock Tunnel Boring Machine Disc Cutters 被引量:12
6
作者 Zhao-Huang Zhang Guo-Fang Gong +1 位作者 Qing-Feng Gao Fei Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期913-919,共7页
Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc- cutter spacing, as determined by the minimum specific energy ... Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc- cutter spacing, as determined by the minimum specific energy required for fragmentation; however, indentation tests showed that rock deforms plastically beneath the cutters. Equations for thrust were developed for both the traditional, popularly employed disc cutter and anew design based on three-dimensional theory. The respective energy consumption for penetration, rolling, and side-slip fragmentations were obtained. A change in disc-cutter fragmentation angles resulted in a change in the nature of the interaction between the cutter and rock, which lowered the specific energy of fragmentation. During actual field excavations to the same penetration length, the combined energy consumption for fragmentation using the newly designed cutters was 15% lower than that when using the traditional design. This paper presents a theory for energy saving in tunnel boring machines. Investigation results showed that the disc cutters designed using this theory were more durable than traditional designs, and effectively lowered the energy consumption. 展开更多
关键词 Newly design Disc cutter FRAGMENTATION Specific energy Energy consumption
下载PDF
A Closer Look at the Design of Cutterheads for Hard Rock Tunnel-Boring Machines 被引量:17
7
作者 Jamal Rostami Soo-Ho Chang 《Engineering》 SCIE EI 2017年第6期892-904,共13页
The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part ... The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part of the machine plays a more crucial role in the efficient operation of the machine than its cutterhead. The design of the cutterhead impacts the efficiency of cutting, the balance of the head, the life of the cutters, the maintenance of the main bearing/gearbox, and the effectiveness of the mucking along with its effects on the wear of the face and gage cutters/muck buckets. Overall, cutterhead design heavily impacts the rate of penetration (ROP), rate of machine utilization (U), and daffy advance rate (AR). Although there has been some discussion in commonly available publications regarding disk cutters, cutting forces, and some design features of the head, there is limited literature on this subject because the design of cutter- heads is mainly handled by machine manufacturers. Most of the design process involves proprietary algorithms by the manufacturers, and despite recent attention on the subject, the design of rock TBMs has been somewhat of a mystery to most end-users. This paper is an attempt to demystify the basic concepts in design. Although it may not be sufficient for a full-fledged design by the readers, this paper allows engineers and contractors to understand the thought process in the design steps, what to Look for in a proper design, and the implications of the head design on machine operation and life cycle. 展开更多
关键词 TBM cutterhead design cutterhead layout Disk cutters Cutting pattern TBM efficiency
下载PDF
Wear Analysis of Disc Cutters of Full Face Rock Tunnel Boring Machine 被引量:19
8
作者 ZHANG Zhaohuang MENG Liang SUN Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1294-1300,共7页
Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length... Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians’ experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters’ life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters. 展开更多
关键词 full face rock tunnel boring machine disc cutter radial wear coefficient axial wear coefficient trajectory wear coefficient
下载PDF
Distribution of contact loads in crushed zone between tunnel boring machine disc cutter and rock 被引量:11
9
作者 SHI Yu-peng XIA Yi-min +2 位作者 TAN Qing ZHANG Yi-chao QIAO Shuo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2393-2403,共11页
The construction efficiency and quality of tunnel boring machines(TBMs)is largely determined by the service life of cutting tools,which is the result of contact loads in the crushed zone between cutter ring and rock.I... The construction efficiency and quality of tunnel boring machines(TBMs)is largely determined by the service life of cutting tools,which is the result of contact loads in the crushed zone between cutter ring and rock.In this paper,a series of rock breaking tests were conducted with a 216 mm diameter disc cutter and concrete samples.Based on the superposition principle,the distribution of contact loads between disc cutter and rock were obtained by using the truncated singular value decomposition(TSVD).The results show that both the peak value and the whole numerical distribution of the radial strains on the cutter ring increase with the increase of the penetration.The distribution curves of the contact loads show an approximate parabola going downwards,which indicates contact loads are more concentrated.The front non-loading area with a ratio from 1.8%to 5.4%shows an increasing trend with the increase of penetration.However,the change of rear non-loading area is not obvious.It is believed that the conclusions have guidance for the study of rock breaking mechanism and manufacturing process of the disc cutter. 展开更多
关键词 disc cutter contact loads superposition principle non-loading area
下载PDF
Prediction of Disc Cutter Life During Shield Tunneling with AI via the Incorporation of a Genetic Algorithm into a GMDH-Type Neural Network 被引量:15
10
作者 Khalid Elbaz Shui-Long Shen +2 位作者 Annan Zhou Zhen-Yu Yin Hai-Min Lyu 《Engineering》 SCIE EI 2021年第2期238-251,共14页
Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cut... Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cutter life(Hf)by integrating a group method of data handling(GMDH)-type neural network(NN)with a genetic algorithm(GA).The efficiency and effectiveness of the GMDH network structure are optimized by the GA,which enables each neuron to search for its optimum connections set from the previous layer.With the proposed model,monitoring data including the shield performance database,disc cutter consumption,geological conditions,and operational parameters can be analyzed.To verify the performance of the proposed model,a case study in China is presented and a database is adopted to illustrate the excellence of the hybrid model.The results indicate that the hybrid model predicts disc cutter life with high accuracy.The sensitivity analysis reveals that the penetration rate(PR)has a significant influence on disc cutter life.The results of this study can be beneficial in both the planning and construction stages of shield tunneling. 展开更多
关键词 Disc cutter life Shield tunneling Operational parameters GMDH-GA
下载PDF
Theoretical prediction of wear of disc cutters in tunnel boring machine and its application 被引量:8
11
作者 Zhaohuang Zhang Muhammad Aqeel +1 位作者 Cong Li Fei Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期111-120,共10页
Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the anal... Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the analyses of cutter motion in the rock breaking process and trajectory of rock breaking point on the cutter edge in rocks. The analytical expressions of the length of face along which the breaking point moves and the length of spiral trajectory of the maximum penetration point are derived. Through observation of rock breaking process of disc cutters as well as analysis of disc rock interaction, the following concepts are proposed: the arc length theory of predicting wear extent of inner and center cutters, and the spiral theory of predicting wear extent of gage and transition cutters. Data obtained from5621 m-long Qinling tunnel reveal that among 39 disc cutters, the relative errors between cumulatively predicted and measured wear values for nine cutters are larger than 20%, while approximately 76.9% of total cutters have the relative errors less than 20%. The proposed method could offer a new attempt to predict the disc cutter's wear extent and changing time. 展开更多
关键词 Full-face rock TUNNEL BORING machine(TBM) DISC cutter WEAR prediction
下载PDF
Prediction of Dynamic Cutting Force and Regenerative Chatter Stability in Inserted Cutters Milling 被引量:9
12
作者 LI Zhongqun LIU Qiang +1 位作者 YUAN Songmei HUANG Kaisheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期555-563,共9页
Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact c... Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications. 展开更多
关键词 inserted cutter cutting force prediction chatter stability dynamic simulation
下载PDF
Numerical and experimental investigation of rock breaking method under free surface by TBM disc cutter 被引量:11
13
作者 ZHANG Xu-hui XIA Yi-min +2 位作者 ZENG Gui-ying TAN Qing GUO Ben 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2107-2118,共12页
To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under th... To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under the free surface was studied including stressed zone,crush zone,crack initiation and propagation.Then the crack propagation conditions,specific energy,etc.under different free surface distance(S)were also investigated combined with linear cutting experiments.The results show that the rock breaking process under the free surface induced by disc cutter is dominated by tension failure mode.There exists a critical S to promote crack propagation to free surface effectively.And this rock breaking method can improve the rock breaking force and breaking efficiency significantly when proper. 展开更多
关键词 free surface tunnel boring machine disc cutter rock breaking method
下载PDF
Multi-degree-of-freedom coupling dynamic characteristic of TBM disc cutter under shock excitation 被引量:8
14
作者 霍军周 孙晓龙 +2 位作者 李广庆 李涛 孙伟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3326-3337,共12页
When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The stru... When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The structure of disc cutter contains many joint interfaces among cutter ring, cutter body, bearings and cutter shaft. On account of the coupling for dynamic contact and the transfer path among joint interface, mechanical behavior of disc cutter becomes extremely complex under the impact of heavy-duty, which puts forward higher requirements for disc cutter design. A multi-degree-of-freedom coupling dynamic model, which contains a cutter ring, a cutter body, two bearings and cutter shaft, is established, considering the external stochastic excitations, bearing nonlinear contact force, multidirectional mutual coupling vibration, etc. Based on the parameters of an actual project and the strong impact external excitations, the modal properties and dynamic responses are analyzed, as well as the cutter shaft and bearings' loads and load transmission law are obtained. Numerical results indicate the maximum radial and axial cutter ring amplitudes of dynamic responses are 0.568 mm and 0.112 mm; the maximum radial and axial vibration velocities are 41.1 mm/s and 38.9 mm/s; the maximum radial and axial vibration accelerations are 94.7 m/s2 and 58.6 m/s2; the maximum swing angle and angular velocity of cutter ring are 0.007° and 0.0074 rad/s, respectively. Finally, the maximum load of bearing roller is 40.3 k N. The proposed research lays a foundation for structure optimization design of disc cutter and cutter base, as well as model selection, modification and fatigue life of the cutter bearing. 展开更多
关键词 tunneling boring machine(TBM) disc cutter system joint interface coupled nonlinearity dynamical characteristics
下载PDF
Layout design for disc cutters based on analysis of TBM cutter-head structure 被引量:11
15
作者 SUN Hong-yan GUO Wei +2 位作者 LIU Jian-qin SONG Li-wei LIU Xiao-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第4期812-830,共19页
Studies to date have failed to consider gage disc cutters’variable cutting depth and the constraints of cutter-head welds,and have ignored the coupling mechanism between the profile of the full-face rock tunnel-borin... Studies to date have failed to consider gage disc cutters’variable cutting depth and the constraints of cutter-head welds,and have ignored the coupling mechanism between the profile of the full-face rock tunnel-boring machine(TBM)cutter-head and the assembled radius layout of the disc cutters.To solve these problems,an adaptive design method for studying cutter layout was proposed.Taking the bearing stress of the outermost gage disc cutter as an index,the profile of the cutter-head was determined.Using a genetic algorithm and based on the principles of equal life and equal wear,the assembled radii of the cutters were optimally designed.Boundary conditions of non-interference between the cutters,manholes,muck buckets and welding lines were given when a star layout pattern was used on cutters.The cutter-head comprehensive evaluation model was established by adopting relative optimization improvement degree of evaluation indices to achieve dimensional consistency.Exemplifying the MB264-311-8030 mm tape TBM cutter-head,the calculations show that compared with the original layout scheme,among the 51 disc cutters,the largest gap of the cutters’assembled radiuses is only 25.8 mm,which is 0.64%of the cutter-head’s radius and is negligible.The cutter-head’s unbalanced radial force decreases by 62.41%,the overturning moment decreases by 33.22%,and the cutter group’s centroid shift increases by only 18.48%.Each index is better than or approximately equal to the original cutter-head layout scheme,and the equivalent stress and deformation are both smaller;these results fully verify the feasibility and effectiveness of the method. 展开更多
关键词 split type cutter-head disc cutters’layout genetic algorithm equal life equal wear star layout pattern
下载PDF
Endoscopic submucosal dissection for esophageal granular cell tumor using the clutch cutter 被引量:8
16
作者 Keishi Komori Kazuya Akahoshi +9 位作者 Yoshimasa Tanaka Yasuaki Motomura Masaru Kubokawa Soichi Itaba Terumasa Hisano Takashi Osoegawa Naotaka Nakama Risa Iwao Masafumi Oya Kazuhiko Nakamura 《World Journal of Gastrointestinal Endoscopy》 CAS 2012年第1期17-21,共5页
Endoscopic submucosal dissection (ESD) with a knife is a technically demanding procedure associated with a high complication rate.The shortcomings of this method are the deficiencies of fixing the knife to the target ... Endoscopic submucosal dissection (ESD) with a knife is a technically demanding procedure associated with a high complication rate.The shortcomings of this method are the deficiencies of fixing the knife to the target lesion,and of compressing it.These shortcomings can lead to major complications such as perforation and bleeding.To reduce the risk of complications related to ESD,we developed a new grasping type scissors forceps (Clutch Cutter,Fujifilm,Japan) which can grasp and incise the targeted tissue using an electrosurgical current.Esophagogastroduodenoscopy on a 59-year-old Japanese man revealed a 16mm esophageal submucosal nodule with central depression.Endoscopic ultrasonography demonstrated a hypoechoic solid tumor limited to the submucosa without lymph node involvement.The histologic diagnosis of the specimen obtained by biopsy was granular cell tumor.It was safely and accurately resected without unexpected incision by ESD using the CC.No delayed hemorrhage or perforation occurred.Histological examination confirmed that the granular cell tumor was completely excised with negative resection margin.We report herein a case of esophageal granular cell tumor successfully treated by an ESD technique using the CC. 展开更多
关键词 ENDOSCOPIC SUBMUCOSAL dissection ESOPHAGEAL granular cell tumor CLUTCH cutter ENDOSCOPIC therapy Grasping type SCISSORS forceps
下载PDF
Side force formation mechanism and change law of TBM center cutter 被引量:6
17
作者 夏毅敏 田彦朝 +1 位作者 谭青 侯禹蒙 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1115-1122,共8页
The center cutter of a hard rock tunnel boring machine(TBM) is installed on the cutterhead at a small radius and thus bears complex side force.Given this fact,the formation mechanism and change law of the side force s... The center cutter of a hard rock tunnel boring machine(TBM) is installed on the cutterhead at a small radius and thus bears complex side force.Given this fact,the formation mechanism and change law of the side force suffered by the center cutter were studied.Based on the rock shear failure criterion in combination with the lateral rolling width,a model for predicting the average side force was set up.Besides,a numerical analysis model of the rock fragmentation of the center cutter was established,and the instantaneous load changing features were investigated.Results shows that the inner side of the center cutter can form lateral rolling annulus in rock during the rotary cutting process.The smaller the installation radius is,the greater the cutter side force will be.In a working condition,the side force of the innermost center cutter is 11.66 k N,while it decreases sharply when installation radius increases.Variation tends to be gentle when installation radius is larger than 500 mm,and the side force of the outermost center cutter is reduced to 0.74 k N. 展开更多
关键词 tunnel boring machine center cutter rotary cutting installation radius side force
下载PDF
Geological adaptability matching design of disc cutter using multicriteria decision making approaches 被引量:9
18
作者 XIA Yi-min LIN Lai-kuang +3 位作者 WU Dun JIA Lian-hui CHEN Zhuo BIAN Zhang-kuo 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第4期843-854,共12页
Geological adaptability matching design of a disc cutter is the prerequisite of cutter head design for tunnel boring machines(TBMs)and plays an important role in improving the tunneling efficiency of TBMs.The main pur... Geological adaptability matching design of a disc cutter is the prerequisite of cutter head design for tunnel boring machines(TBMs)and plays an important role in improving the tunneling efficiency of TBMs.The main purpose of the cutter matching design is to evaluate the cutter performance and select the appropriate cutter size.In this paper,a novel evaluation method based on multicriteria decision making(MCDM)techniques was developed to help TBM designers in the process of determining the cutter size.The analytic hierarchy process(AHP)and matter element analysis were applied to obtaining the weights of the cutter evaluation criteria,and the fuzzy comprehensive evaluation and technique for order performance by similarity to ideal solution(TOPSIS)approaches were employed to determine the ranking of the cutters.A case application was offered to illustrate and validate the proposed method.The results of the project case demonstrate that this method is reasonable and feasible for disc cutter size selection in cutter head design. 展开更多
关键词 tunnel boring machine(TBM) disc cutter matching design evaluation method multicriteria decision making(MCDM)
下载PDF
Experimental Study on Titanium Alloy Cutting Property and Wear Mechanism with Circular-arc Milling Cutters 被引量:3
19
作者 Tao Chen Jiaqiang Liu +3 位作者 Gang Liu Hui Xiao Chunhui Li Xianli Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期219-229,共11页
Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing ineffici... Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing inefficiency,serious wear,poor workpiece face quality,etc.Aiming at the above problems,this paper carried out a comparative experimental study on titanium alloy milling based on the CAMCand BEMC.The variation law of cutting force and wear morphology of the two tools were obtained,and the wear mechanism and the effect of wear on machining quality were analyzed.The conclusion is that in contrast with BEMC,under the action of cutting thickness thinning mechanism,the force of CAMC was less,and its fluctuation was more stable.The flank wear was uniform and near the cutting edge,and the wear rate was slower.In the early period,the wear mechanism of CAMC was mainly adhesion.Gradually,oxidative wear also occurred with milling.Furthermore,the surface residual height of CAMC was lower.There is no obvious peak and trough accompanied by fewer surface defects. 展开更多
关键词 Circular-arc milling cutter Titanium alloy Ball-end milling cutter Surface quality Milling force Tool wear Machining quality
下载PDF
Differentiation and analysis on rock breaking characteristics of TBM disc cutter at different rock temperatures 被引量:5
20
作者 谭青 张桂菊 +1 位作者 夏毅敏 李建芳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4807-4818,共12页
In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis o... In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis of rock temperature change by using particle flow code theory and the influence law of interaction mechanism between disc cutter and rock was also numerically simulated.Furthermore,by using the linear cutting experiment platform,rock breaking process of TBM disc cutter at different rock temperatures was well verified by the experiments.Finally,rock breaking characteristics of TBM disc cutter were differentiated and analyzed from microscale perspective.The results indicate the follows.1) When rock temperature increases,the mechanical properties of rock such as hardness,and strength,were greatly reduced,simultaneously the microcracks rapidly grow with the cracks number increasing,which leads to rock breaking load decreasing and improves rock breaking efficiency for TBM disc cutter.2) The higher the rock temperature,the lower the rock internal stress.The stress distribution rules coincide with the Buzin Neske stress circle rules: the maximum stress value is below the cutting edge region and then gradually decreases radiant around; stress distribution is symmetrical and the total stress of rock becomes smaller.3) The higher the rock temperature is,the more the numbers of micro,tensile and shear cracks produced are by rock as well as the easier the rock intrusion,along with shear failure mode mainly showing.4) With rock temperature increasing,the resistance intrusive coefficients of rock and intrusion power decrease obviously,so the specific energy consumption that TBM disc cutter achieves leaping broken also decreases subsequently.5) The acoustic emission frequency remarkably increases along with the temperature increasing,which improves the rock breaking efficiency. 展开更多
关键词 tunnel boring maching(TBM) disc cutter rock temperature rock breaking characteristic numerical simulation
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部