期刊文献+
共找到150篇文章
< 1 2 8 >
每页显示 20 50 100
Interaction mechanism of cyanide with pyrite during the cyanidation of pyrite and the decyanation of pyrite cyanide residues by chemical oxidation
1
作者 Wenwen Han Hongying Yang Linlin Tong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期1996-2005,共10页
The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction ... The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues. 展开更多
关键词 PYRITE CYANIDE DECYANATION sodium sulfite/air oxidation cyanide residue
下载PDF
Clinical Case Report of Acute Heart Injury and Acute Rhabdomyolysis Due to Cyanide Poisoning
2
作者 Nguyen Dang Duc Nguyen Phuong Sinh Lam Nguyen Hong Anh 《Open Journal of Emergency Medicine》 2024年第2期29-32,共4页
Cyanide poisoning is one of the most dangerous poisonings, and it can be absorbed into the body through the mouth, inhalation and through the skin. A 32-year-old female patient was admitted to our poison control cente... Cyanide poisoning is one of the most dangerous poisonings, and it can be absorbed into the body through the mouth, inhalation and through the skin. A 32-year-old female patient was admitted to our poison control center because of high fever, severe vomiting, and seizures. Physical examination found that the patient was drowsy, had a high fever of 40 degrees Celsius, pulse of 140 beats/minute, and increased tendon and bone reflexes. Exploiting the patient’s information, it was discovered that the patient bought Cyanide to drink with the intention of committing suicide. The patient was quickly treated with gastric lavage and activated charcoal. Echocardiography recorded EF: 35%, reduced movement of the entire myocardium. CK blood test: 4562 U/L. The patient’s condition rapidly deteriorated and the patient was made ECMO, IHD and CVVHDF. After 3 days of treatment, the patient’s condition did not improve, so the family asked for the patient to go home. This article aims to describe the rapidly progressing and severe damage to the heart and muscles of patients with cyanide poisoning. 展开更多
关键词 Cyanide Poisoning Acute Heart Injury Acute Rhabdomyolysis
下载PDF
Fe extraction from high-silicon and aluminum cyanide tailings by pretreatment of water leaching before magnetic separation 被引量:11
3
作者 张亚莉 李怀梅 于先进 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1165-1173,共9页
Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and A1, as well as its effect on Fe extraction in the wat... Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and A1, as well as its effect on Fe extraction in the water leaching process was investigated. The effects of different parameters on iron recovery were studied, and the reaction parameters were proposed as follows: sodium carbonate content of 30%, water leaching at 60 ~C for 5 min, liquid/solid ratio of 15:1, and exciting current of 2 A. Under these optimal conditions, magnetic concentrate containing 59.11% total iron and a total iron recovery rate of 76.12% was obtained. In addition, the microstructure and phase transformation of the process of water leaching were studied by X-ray powder diffraction technique (XRD), Electronic image of backscattering (BEI), X-ray fluorescence (XRF), and energy dispersive spectrometry (EDS). The results indicate that the soluble compound impurities generated in the roasting process are washed out, and the dissoluble substances enter into nonmagnetic materials by water leaching, realizing the effective separation of impurities and Fe. 展开更多
关键词 water leaching cyanide tailings grade of magnetic concentrate recovery rate of iron yield of magnetic concentrate
下载PDF
TDDFT Study on Different Sensing Mechanisms of Similar Cyanide Sensors Based on Michael Addition Reaction 被引量:1
4
作者 李光跃 宋平 何国钟 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第3期305-310,I0003,共7页
The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their... The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena. The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysieal properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore, the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescence for the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms. 展开更多
关键词 SENSOR FLUORESCENCE CYANIDE Sensing mechanism Time-dependent density functional theory Michael addition reaction
下载PDF
Application of ferrate(VI) in the treatment of industrial wastes containing metal-complexed cyanides : A green treatment 被引量:17
5
作者 SEUNG-MOK Lee DIWAKAR Tiwari 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第10期1347-1352,共6页
Ferrate(VI) was employed for the oxidation of cyanide (CN) and simultaneous removal of copper or nickel in the mixed/complexed systems of CN-Cu, CN-Ni, or CN-Cu-Ni. The degradation of CN (1.00 mmol/L) and remova... Ferrate(VI) was employed for the oxidation of cyanide (CN) and simultaneous removal of copper or nickel in the mixed/complexed systems of CN-Cu, CN-Ni, or CN-Cu-Ni. The degradation of CN (1.00 mmol/L) and removal of Cu (0.095 mmol/L) were investigated as a function of Fe(Ⅵ) doses from 0.3-2.00 mmol/L at pH 10.0. It was found that Fe(Ⅵ) could readily oxidize CN and the reduction of Fe(Ⅵ) into Fe(Ⅲ) might serve efficiently for the removal of free copper ions. The increase in Fe(Ⅵ) dose apparently favoured the CN oxidation as well as Cu removal. Moreover, the pH dependence study (pH 10.0-13.0) revealed that the oxidation of CN was almost unaffected in the studied pH range (10.0-13.0), however, the maximum removal efficiency of Cu was obtained at pH 13.0. Similarly, treatment was carded out for CN-Ni system having the initial Ni concentration of 0.170 mmol/L and CN concentration of 1.00 mmol with Fe(Ⅵ) dose 2.00 mmol at various pH values (10.0-12.0). Results showed a partial oxidation of CN and partial removal of Ni. It can be observed that Fe(Ⅵ) can partially degrade the CN-Ni complex in this pH range. Further, Fe(Ⅵ) was applied for the treatment of simulated industrial waste/effluent waters treatment containing CN, Cu, and Ni. 展开更多
关键词 CYANIDE metal-complexed cyanide oxidation copper nickel ferrate(Ⅵ)
下载PDF
Treatment of copper-rich gold ore by cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching 被引量:9
6
作者 A.D.BAS E.KOC +1 位作者 Y.E.YAZICI H.DEVECI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期597-607,共11页
The treatment of a copper sulphide-bearing gold ore by direct cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching was investigated. Dissolution behaviour of gold and copper in these leaching systems... The treatment of a copper sulphide-bearing gold ore by direct cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching was investigated. Dissolution behaviour of gold and copper in these leaching systems was demonstrated. Severe interference by the copper containing sulphides with cyanide leaching of gold is observed at p(NaCN)〈5 g/L. This is consistent with speciation calculations. Ammonia pretreatment is shown to readily eliminate the copper interference, allowing almost complete extraction of gold with concomitantly low reagent consumption in subsequent cyanide leaching. In ammoniacal cyanide system, Box-Behnken experimental design shows the main and interaction effects of NH3, NaCN and Pb(NO3)2. The concentrations of NH3 and NaCN are statistically confirmed to be significant factors affecting extraction of gold while the effect of Pb(NO3)2 is limited. Increasing the concentration of NH3 improves the selectivity and extent of gold extraction and reduces the cyanide consumption. The contribution of reagent interactions to gold extraction is statistically insignificant. These findings highlight that ammonia pretreatment and ammonia-cyanide leaching are promising approaches for the treatment of gold ores with high copper sulphide content. 展开更多
关键词 copper-gold ores ammoniacal cyanide leaching ammonia leaching PRETREATMENT cyanide leaching
下载PDF
Mechanism of sodium sulfide on flotation of cyanide-depressed pyrite 被引量:8
7
作者 Zhao CAO Peng WANG +2 位作者 Wen-bo ZHANG Xiao-bo ZENG Yong-dan CAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第2期484-491,共8页
The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation result... The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation results show that both PAX and Na2S can promote the flotation recovery of cyanide-depressed pyrite and their combination can further improve the pyrite flotation recovery.Electrochemical measurements show that PAX and Na2S interacted with cyanide-depressed pyrite through different mechanisms.PAX competed with cyanide and was adsorbed on the pyrite surface in the form of dixanthogen,thus enhancing the hydrophobicity and flotation of cyanide-depressed pyrite.Unlike PAX,Na2S rendered the pyrite surface hydrophobic through the reduction of ferricyanide species and the formation of elemental sulfur S0 and polysulfide Sn2-.The combined application of PAX and Na2S induced superior pyrite flotation recovery because of a synergistic effect between PAX and Na2S. 展开更多
关键词 PYRITE CHALCOCITE FLOTATION CYANIDE DEPRESSION sodium sulfide
下载PDF
Footprint of harmful substances in spent pot lining of aluminum reduction cell 被引量:8
8
作者 Feng-qin LIU Ming-zhuang XIE +1 位作者 Wei LIU Hong-liang ZHAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1956-1963,共8页
Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanid... Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanide in a 350 kA cell operated for 2396 days was analyzed and the footprint and corrosion mechanism of the harmful substances in SPL were also studied. It is found that the fluorides are mainly concentrated in the cathode carbon block and the layer of dry barrier under the cathodes, which is closely related to permeability of the cathodes and dry barrier the fluorides penetrate in. Cyanide has a low concentration in the cell center and a high concentration in the sidewall, which is positively related to the air amount entering into the areas in the cells. 展开更多
关键词 aluminum reduction spent pot lining fluorides CYANIDE FOOTPRINT
下载PDF
Mechanisms underlying attenuation of apoptosis of cortical neurons in the hypoxic brain by flavonoids from the stems and leaves of Scutellaria baicalensis Georgi 被引量:8
9
作者 Guangxin Miao Hongxiang Zhao +6 位作者 Ke Guo Jianjun Cheng Shufeng Zhang Xiaofeng Zhang Zhenling Cai Hong Miao Yazhen Shang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第17期1592-1598,共7页
Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to... Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to potassium cyanide to establish a model of in vitro neural cell apoptosis. Inhibition of apoptosis by flavonoids from the stems and leaves of Scutellaria baical- ensis Georgi at concentrations of 18.98, 37.36, and 75.92 gg/mL was detected using this model. These flavonoids dramatically increased cell survival, inhibited cell apoptosis and excessive pro- duction of malondialdehyde, and increased the activities of superoxide dismutase, glutathione peroxidase, and Na+-K*-ATPase in primary cortical neurons exposed to potassium cyanide. The flavonoids from the stems and leaves of Scutellaria baicalensis Georgi were originally found to have a polyhydric structure and to protect against cerebral hypoxia in in vitro and in vivo models, including hypoxia induced by potassium cyanide or cerebral ischemia. The present study suggests that flavonoids from the stems and leaves of Scutellaria baicalensis Georgi exert neuroprotective effects via modulation of oxidative stress, such as malondialdehyde, superoxide dismutase, glutathione peroxidase and Na+-K+-ATPase disorders induced by potassium cyanide. 展开更多
关键词 nerve regeneration brain injury Scutellaria baicalensis Georgi FLAVONOIDS potassium cyanide APOPTOSIS oxidative stress Na+-IC-ATPase neural regeneration
下载PDF
Copper solvent extraction from alkaline cyanide solution with guanidine extractant LIX 7950 被引量:6
10
作者 F.XIE D.B.DREISINGER 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期1136-1140,共5页
The use of the guanidine extractant LIX 7950 extracting copper and cyanide from alkaline cyanide solution was investigated.The extraction of copper and cyanide under different initial copper and extractant concentrati... The use of the guanidine extractant LIX 7950 extracting copper and cyanide from alkaline cyanide solution was investigated.The extraction of copper and cyanide under different initial copper and extractant concentrations was examined and the stoichiometric extraction constant of Cu(CN)32- with LIX 7950 was calculated.Both the distribution coefficient and the stoichiometric extraction constant of Cu(CN)3 2-with LIX 7950 decrease when the temperature is varied from 25℃to 45℃, indicating the extraction process is exothermic.The calculated enthalpy change of the reaction(-HΘ)is about-190 kJ/mol.The copper extraction isotherms under different molar ratios of cyanide to copper are established.The preferential extraction of Cu(CN)32- over Cu(CN)4 3-and CN -has been confirmed and a high cyanide-to-copper molar ratio tends to suppress copper loading. The loaded copper and cyanide can be stripped efficiently by the moderately strong NaOH solutions(0.5-1.0 mol/L)and the presence of NaCN in the stripping solution facilitates copper stripping. 展开更多
关键词 COPPER CYANIDE solvent extraction GUANIDINE
下载PDF
Flotation behaviors and mechanisms of chalcopyrite and galena after cyanide treatment 被引量:5
11
作者 Yi-wen MA Yue-xin HAN +2 位作者 Yi-min ZHU Yan-jun LI Hao LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3245-3252,共8页
Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the twocyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction... Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the twocyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction between CN? and the twomineral surfaces were both chemical adsorption and can be described by the Langmuir adsorption isotherm model. In the optimumcondition of pH 6.5 and 4.0 mg/L BX, the recovery of cyaniding chalcopyrite and galena reached 82.1% and 63.9%, respectively. BXimproved the hydrophobicity of the surfaces of the two minerals, although CN? reduced the contact angle on the surface of minerals.The inhibitory effect of CN? on chalcopyrite far outweighed galena. Electrostatic adsorption exists in the interaction between BX andthe surface of galena after cyanide treatment in the pH range of 4.2?8.4, while the interactions between BX and the surface ofchalcopyrite after cyanide treatment is chemical adsorption. 展开更多
关键词 CHALCOPYRITE GALENA cyanide absorption FLOTATION butyl xanthate
下载PDF
Efficient destruction of sodium cyanide by thermal decomposition with addition of ferric oxide 被引量:4
12
作者 Kai-wei DONG Feng XIE +3 位作者 Wei WANG Yong-feng CHANG Chun-lin CHEN Xiao-wei GU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期1113-1126,共14页
Efficient destruction of cyanide by thermal decomposition with ferric oxide addition was proposed. The mechanism of destruction of sodium cyanide with or without ferric oxide addition under various conditions was exam... Efficient destruction of cyanide by thermal decomposition with ferric oxide addition was proposed. The mechanism of destruction of sodium cyanide with or without ferric oxide addition under various conditions was examined by XRD, DSC-TG, and chemical analysis technologies. In the absence of ferric oxide, sodium cyanide decomposes at 587.4 ℃ in air and 879.2 ℃ in argon atmosphere. In the presence of ferric oxide, about 60% of sodium cyanide decomposes at 350 ℃ for 30 min in argon, while almost all sodium cyanide decomposes within 30 min in air or O2 with mass ratio of ferric oxide to sodium cyanide of 1:1. The increase of ferric oxide addition, temperature, and heating time facilitates the destruction of sodium cyanide. It is believed that with ferric oxide addition, NaCN reacts with Fe2O3 to form Na4Fe(CN)6, Na2CO3, NaNO2 and Fe3O4 in argon. NaCN decomposes into NaCNO, Na4Fe(CN)6, minor NaNO2, and the formed NaCNO and Na4Fe(CN)6 further decompose into Na2CO3, CO2, N2, FeOx, and minor NOx in air or O2. 展开更多
关键词 cyanide destruction thermal decomposition ferric oxide catalytic oxidation sodium cyanide
下载PDF
Differences of cyanide leaching between calcine and dust from refractory gold concentrates 被引量:5
13
作者 Pan CAO Shang-hua ZHANG +4 位作者 Ya-jie ZHENG Han-bing HE Shen-zhi LAI Xing-jun WANG Bing TAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1964-1979,共16页
Differences of cyanide leaching between the calcine and the dust from a refractory gold concentrate were investigated by comparative method. Results showed that gold leaching efficiencies of the calcine and the dust w... Differences of cyanide leaching between the calcine and the dust from a refractory gold concentrate were investigated by comparative method. Results showed that gold leaching efficiencies of the calcine and the dust were 85.31% and 54.30%, respectively, with direct cyanidation. Contents and existing forms of arsenic and carbon were the main reasons for those differences. The maximum gold leaching efficiencies of the calcine and the dust were 87.70% and 58.60%, respectively, with cyanidation after NaOH pre-leaching. Harmful elements removal, gold loss in NaOH pre-leaching and iron oxides hindrance codetermined gold leaching efficiencies of the calcine and the dust. After H2SO4 pre-leaching, the maximum gold leaching efficiencies of the calcine and the dust achieved 94.96% and 80.40%, respectively. The effect of carbonaceous matter was the main reason for differences for leaching efficiencies of the calcine and the dust. Based on those differences, two proper gold extraction processes were put forward, and gold leaching efficiencies for the calcine and the dust achieved 94.91% and 91.90%, respectively. 展开更多
关键词 refractory gold concentrate CALCINE DUST CYANIDATION carbonaceous matter
下载PDF
Co-intensification of cyanide leaching gold by mercury ions and oxidant 被引量:4
14
作者 李骞 姜涛 +3 位作者 杨永斌 李光辉 郭宇峰 邱冠周 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第8期1521-1526,共6页
The effects of mercury ions on gold cyanidation were studied. The results show that under low cyanide concentration, gold cyanide process is controlled by CN- transfer, while at higher cyanide concentration, there for... The effects of mercury ions on gold cyanidation were studied. The results show that under low cyanide concentration, gold cyanide process is controlled by CN- transfer, while at higher cyanide concentration, there forms passivation on gold surface. Therefore, chemical oxidation of gold in cyanide solution of higher concentration is controlled by surface reaction. Small quantity of additions of mercury ions bring about great increases in anodic gold dissolution rate, decreases the passivation and reduces the equilibrium activated energy. In addition, they also markedly change the effect pattern of cyanide concentration. Mercury ions show positive effects on cathodic reduction of oxygen and raise the rate of electrochemical step of the cathodic reduction of oxygen. Addition of a certain amount of hydrogen peroxide is confirmed to be an effective way for intensification of cathodic process on gold electrode. Active potential range and current peak on anodic dissolution are enlarged when being co-intensified with Hg^2+ and hydrogen peroxide. Co-intensifying effect may be obtained and gold from gold concentrates. gold leaching rate is considerably increased on cyanide leaching of 展开更多
关键词 co-intensification cyanide leaching mercury ions hydrogen peroxide
下载PDF
Co-intensification of gold leaching with heavy metals and hydrogen peroxide 被引量:3
15
作者 杨永斌 李骞 +3 位作者 姜涛 郭宇峰 李光辉 许斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期903-909,共7页
Co-intensification was researched to accelerate gold leaching with regards to its electrochemical nature by using anodic intensifiers of heavy metal ions (Pb2+,Bi3+,Tl+,Hg2+ and Ag+) on the basis of hydrogen peroxide ... Co-intensification was researched to accelerate gold leaching with regards to its electrochemical nature by using anodic intensifiers of heavy metal ions (Pb2+,Bi3+,Tl+,Hg2+ and Ag+) on the basis of hydrogen peroxide assistant leaching on three different types of materials which were classified as a refractory sulphide gold concentrate,an easily leachable sulphide gold concentrate,and a low grade oxide gold ore according to their leaching characteristics.The results showed that,favorable co-intensification effects on the three materials were obtained and leaching time of gold was effectively shortened to no longer than 12 h from 16 to 24 h for hydrogen peroxide assistant leaching.For the five tested heavy metal ions,Bi3+and Tl+ presented co-intensifying effect on all the three materials,and Hg2+ caused co-intensifying effect on both refractory and easily leachable sulphide gold concentrates,and Pb2+ and Ag+ only had co-intensifying effect on the easily leachable sulphide gold concentrate. 展开更多
关键词 gold leaching co-intensification CYANIDATION heavy metals hydrogen peroxide
下载PDF
Cyanide removal for ultrafine gold cyanide residues by chemical oxidation methods 被引量:3
16
作者 Wen-wen HAN Hong-ying YANG Lin-lin TONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第12期4129-4138,共10页
Because of the highly toxic cyanide in the gold cyanide residues,cyanide must be removed for environmental protection.The process mineralogy of residues was studied firstly,and then cyanide removal was carried out by ... Because of the highly toxic cyanide in the gold cyanide residues,cyanide must be removed for environmental protection.The process mineralogy of residues was studied firstly,and then cyanide removal was carried out by three chemical methods.The results showed that the residue mainly contained Si,S and Fe.Pyrite was the main metallic mineral,and the iron-complex cyanides make cyanide removal difficult.The minerals in residues were in ultrafine particle size with high monomer dissociation degrees.In H_(2)O_(2)oxidation process,the self-decomposition and side reactions resulted in high consumption of H_(2)O_(2).In Na_(2)S_(2)O_(5)-air oxidation process,the time for complete process was long because of the reactions between Na_(2)S_(2)O_(5)and O_(2).Na_(2)SO_(3)oxidation method was found to be a new method for cyanide removal without air inflation device.The cyanide content was reduced to the national standard level in 90 min at pH 9.0 with optimum Na_(2)SO_(3)dose of 2.0 g/L. 展开更多
关键词 gold cyanide residues process mineralogy cyanide removal H2O2 oxidation Na2SO3 oxidation
下载PDF
Artificial neural network modeling of gold dissolution in cyanide media 被引量:3
17
作者 S.Khoshjavan M.Mazloumi B.Rezai 《Journal of Central South University》 SCIE EI CAS 2011年第6期1976-1984,共9页
The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid ... The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results. 展开更多
关键词 artificial neural network GOLD CYANIDATION modeling sensitivity analysis
下载PDF
Highly active double metal cyanide complexes: Effect of central metal and ligand on reaction of epoxide/CO2 被引量:3
18
作者 Xing Hong Zhang Shang Chen +3 位作者 Xian Ming Wu Xue Ke Sun Fei Liu Guo Rong Qi 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第7期887-890,共4页
Various novel double metal cyanide (DMC) catalysts were successfully prepared by modifying the central metal (M) and one of cyanide ion (CN-) in Zna[M(CN)b]c complex. Such modifications have significant impact... Various novel double metal cyanide (DMC) catalysts were successfully prepared by modifying the central metal (M) and one of cyanide ion (CN-) in Zna[M(CN)b]c complex. Such modifications have significant impact on the catalytic efficiency as well as the polymer selectivity for the reaction of PO/CO2. Zn-Ni(Ⅱ) DMC is a potential catalyst for alternating copolymerization of PO/CO2,and DMC catalysts based on Zn3[Co(CN)5X]2 (X = Br^- and N3^-) exhibit moderate efficiency for the production of polycarbonates.This research presents the preliminary exploration of novel DMC complex via chemical modification of its central metal and ligand. 展开更多
关键词 Double metal cyanide complexes EPOXIDE CO2 POLYMERIZATION
下载PDF
Kinetics and thermodynamics of cyanide removal by ZnO@NiO nanocrystals 被引量:3
19
作者 Mysam PIRMORADI Saeedeh HASHEMIAN Mohammad Reza SHAYESTEH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第6期1394-1403,共10页
ZnO,NiO and ZnO@NiO nanocrystals were successfully synthesized and characterized by FTIR,XRD and SEM methods.The average particles sizes of ZnO,NiO and ZnO@NiO were32,50and48nm,respectively.The nanocrystals were exami... ZnO,NiO and ZnO@NiO nanocrystals were successfully synthesized and characterized by FTIR,XRD and SEM methods.The average particles sizes of ZnO,NiO and ZnO@NiO were32,50and48nm,respectively.The nanocrystals were examined assensors for cyanide removal.The cyanide sensing test revealed that,compared with the pure ZnO,NiO,the ZnO@NiO nanocrystalsexhibited highly improved sensing performances.The ZnO@NiO nano crystals were found to have better capacity for iron cyanidethan sodium cyanide.The effects of significant parameters such as contact time,pH(2-12),nanocrystal dose(0.02-0.4g)andcyanide concentration(5-50mg/L)on the removal of cyanide by nanocrystals were explored.At an optimum pH<5,over90%removal of20mg/L cyanide was obtained for nanocrystal dose of0.2g after30min contact time for iron cyanide by ZnO@NiOnano crystals.Cyanide removal was followed by pseudo second order kinetic model for ZnO@NiO nano crystals(k2=4.66×10-2andR2=0.999).The values of standard entralpy change of7.87kJ/mol and standard free energy change of-18.62kJ/mol at298K suggestthe adsorption of cyanide on nanocrystals is an endothermic and spontaneous process.ZnO@NiO nanocrystal is an efficient sensorfor removal of cyanide from water and wastewater. 展开更多
关键词 cyanide removal nano crystal adsorption ZnO@NiO
下载PDF
Interface behavior of chalcopyrite during flotation from cyanide tailings 被引量:3
20
作者 Xuemin Qiu Hongying Yang +3 位作者 Guobao Chen Linlin Tong Zhenan Jin Qin Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第3期439-445,共7页
The interface characteristics of cyanide tailings are different from those of the raw ore. In this study, valuable elements could not be thoroughly recovered via the flotation of cyanide tailings from Shandong, China.... The interface characteristics of cyanide tailings are different from those of the raw ore. In this study, valuable elements could not be thoroughly recovered via the flotation of cyanide tailings from Shandong, China. The interface and floatability of these tailings were investig- ated by phase analysis and flotation tests. The chalcopyrite in the cyanide tailings was fine and had a porous surface. The floatability of 68% chalcopyrite was similar to that of galena in the presence of a collector. A layer of fine galena particles compactly wrapped the chalcopyrite. The chalcopyrite recovery sharply decreased as the nonpolar oil residue in cyanide tailings was extracted using alcohol;however, this removal had no effect on the galena. The remaining chalcopyrite in the flotation tailings was covered with an oxidation layer consisting of O, Fe, S, Pb, Cu, Zn, and Si. 展开更多
关键词 cyanide tailings interface behavior CHALCOPYRITE FLOTATION surface wrapped layer
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部