Cyanoethylation of phenylamine is one of the important steps for the production of dicyanoethyl-based disperse dyes.However,the exothermic nature of this reaction and the inherent instability of intermittent dynamic o...Cyanoethylation of phenylamine is one of the important steps for the production of dicyanoethyl-based disperse dyes.However,the exothermic nature of this reaction and the inherent instability of intermittent dynamic operation pose challenges in achieving both high safety and reaction efficiency.In this study,a continuous cyanoethylation of phenylamine for synthesizing N,N-dicyanoethylaniline in a microreactor system has been developed.By optimizing the reaction conditions,the reaction time was significantly reduced from over 2 h in batch operation to approximately 14 min in the microreactor,while high conversion and selectivity were maintained.Based on the reaction network constructed,the reaction kinetics was established,and the kinetic parameters were then determined.These findings provide valuable insights into a controllable cyanoethylation reaction,which would be helpful for the design of efficient processes and optimization of reactors.展开更多
Solid-state polymer electrolytes are an important factor in the deployment of highsafety and high-energy-density solid-state lithium metal batteries.Nevertheless,use of the traditional polyethylene oxide-based solid-s...Solid-state polymer electrolytes are an important factor in the deployment of highsafety and high-energy-density solid-state lithium metal batteries.Nevertheless,use of the traditional polyethylene oxide-based solid-state polymer electrolyte is limited due to its inherently low ionic conductivity and narrow electrochemical stability window.Herein,for the first time,we specifically designed a cyanoethyl cellulosein-deep eutectic solvent composite eutectogel as a promising candidate for hybrid solid-state polymer electrolytes.It is found that the proposed eutectogel electrolyte achieves high ionic conductivity(1.87×10^(−3) S cm^(−1) at 25℃),superior electrochemical stability(up to 4.8 V),and outstanding lithium plating/striping behavior(low overpotential of 0.04 V at 1mAcm^(−2) and 1mAh cm^(−2) over 300 h).With the eutectogel-based solid-state polymer electrolyte,a 4.45 V LiCoO_(2)/Li metal battery delivers prominent long-term lifespan(capacity retention of 85%after 200 cycles)and high average Coulombic efficiency(99.5%)under ambient conditions,significantly outperforming the traditional carbonate-based liquid electrolyte.Our work demonstrates a promising strategy for designing eutectogel-based solid-state polymer electrolytes to realize high-voltage and high-energy lithium metal batteries.展开更多
基金the financial supports from National Natural Science Foundation of China(22378344,22208278)Natural Science Foundation of Shandong Province(ZR2023MB120,ZR2023QB152)Youth Innovation Team Plan of Shandong Province(2022KJ270)。
文摘Cyanoethylation of phenylamine is one of the important steps for the production of dicyanoethyl-based disperse dyes.However,the exothermic nature of this reaction and the inherent instability of intermittent dynamic operation pose challenges in achieving both high safety and reaction efficiency.In this study,a continuous cyanoethylation of phenylamine for synthesizing N,N-dicyanoethylaniline in a microreactor system has been developed.By optimizing the reaction conditions,the reaction time was significantly reduced from over 2 h in batch operation to approximately 14 min in the microreactor,while high conversion and selectivity were maintained.Based on the reaction network constructed,the reaction kinetics was established,and the kinetic parameters were then determined.These findings provide valuable insights into a controllable cyanoethylation reaction,which would be helpful for the design of efficient processes and optimization of reactors.
基金supported by the National Natural Science Foundation of China(Grant Nos.52073298,U1706229,52072195)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21070304)the Youth Innovation Promotion Association of CAS(2020217).
文摘Solid-state polymer electrolytes are an important factor in the deployment of highsafety and high-energy-density solid-state lithium metal batteries.Nevertheless,use of the traditional polyethylene oxide-based solid-state polymer electrolyte is limited due to its inherently low ionic conductivity and narrow electrochemical stability window.Herein,for the first time,we specifically designed a cyanoethyl cellulosein-deep eutectic solvent composite eutectogel as a promising candidate for hybrid solid-state polymer electrolytes.It is found that the proposed eutectogel electrolyte achieves high ionic conductivity(1.87×10^(−3) S cm^(−1) at 25℃),superior electrochemical stability(up to 4.8 V),and outstanding lithium plating/striping behavior(low overpotential of 0.04 V at 1mAcm^(−2) and 1mAh cm^(−2) over 300 h).With the eutectogel-based solid-state polymer electrolyte,a 4.45 V LiCoO_(2)/Li metal battery delivers prominent long-term lifespan(capacity retention of 85%after 200 cycles)and high average Coulombic efficiency(99.5%)under ambient conditions,significantly outperforming the traditional carbonate-based liquid electrolyte.Our work demonstrates a promising strategy for designing eutectogel-based solid-state polymer electrolytes to realize high-voltage and high-energy lithium metal batteries.