This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algori...Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm(ABC)as an Nature Inspired Cyber Security mechanism to achieve adaptive defense.It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node.Businesses today have adapted their service distribution models to include the use of the Internet,allowing them to effectively manage and interact with their customer data.This shift has created an increased reliance on online services to store vast amounts of confidential customer data,meaning any disruption or outage of these services could be disastrous for the business,leaving them without the knowledge to serve their customers.Adversaries can exploit such an event to gain unauthorized access to the confidential data of the customers.The proposed algorithm utilizes an Adaptive Defense approach to continuously select nodes that could present characteristics of a probable malicious entity.For any changes in network parameters,the cluster of nodes is selected in the prepared solution set as a probable malicious node and the traffic rate with the ratio of packet delivery is managed with respect to the properties of normal nodes to deliver a disaster recovery plan for potential businesses.展开更多
The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated...The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.展开更多
The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual user...The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual users and organizations from the online threats of data poaching and pilferage.The widespread usage of Information Technology(IT)and IT Enable Services(ITES)reinforces securitymeasures.The constantly evolving cyber threats are a topic that is generating a lot of discussion.In this league,the present article enlists a broad perspective on how cybercrime is developing in KSA at present and also takes a look at some of the most significant attacks that have taken place in the region.The existing legislative framework and measures in the KSA are geared toward deterring criminal activity online.Different competency models have been devised to address the necessary cybercrime competencies in this context.The research specialists in this domain can benefit more by developing a master competency level for achieving optimum security.To address this research query,the present assessment uses the Fuzzy Decision-Making Trial and Evaluation Laboratory(Fuzzy-DMTAEL),Fuzzy Analytic Hierarchy Process(F.AHP),and Fuzzy TOPSIS methodology to achieve segment-wise competency development in cyber security policy.The similarities and differences between the three methods are also discussed.This cybersecurity analysis determined that the National Cyber Security Centre got the highest priority.The study concludes by perusing the challenges that still need to be examined and resolved in effectuating more credible and efficacious online security mechanisms to offer amoreempowered ITES-driven economy for SaudiArabia.Moreover,cybersecurity specialists and policymakers need to collate their efforts to protect the country’s digital assets in the era of overt and covert cyber warfare.展开更多
Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store.Despite the increasing reliance on database management systems,this field continues...Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store.Despite the increasing reliance on database management systems,this field continues to face numerous cyber-attacks.Database management systems serve as the foundation of any information system or application.Any cyber-attack can result in significant damage to the database system and loss of sensitive data.Consequently,cyber risk classifications and assessments play a crucial role in risk management and establish an essential framework for identifying and responding to cyber threats.Risk assessment aids in understanding the impact of cyber threats and developing appropriate security controls to mitigate risks.The primary objective of this study is to conduct a comprehensive analysis of cyber risks in database management systems,including classifying threats,vulnerabilities,impacts,and countermeasures.This classification helps to identify suitable security controls to mitigate cyber risks for each type of threat.Additionally,this research aims to explore technical countermeasures to protect database systems from cyber threats.This study employs the content analysis method to collect,analyze,and classify data in terms of types of threats,vulnerabilities,and countermeasures.The results indicate that SQL injection attacks and Denial of Service(DoS)attacks were the most prevalent technical threats in database systems,each accounting for 9%of incidents.Vulnerable audit trails,intrusion attempts,and ransomware attacks were classified as the second level of technical threats in database systems,comprising 7%and 5%of incidents,respectively.Furthermore,the findings reveal that insider threats were the most common non-technical threats in database systems,accounting for 5%of incidents.Moreover,the results indicate that weak authentication,unpatched databases,weak audit trails,and multiple usage of an account were the most common technical vulnerabilities in database systems,each accounting for 9%of vulnerabilities.Additionally,software bugs,insecure coding practices,weak security controls,insecure networks,password misuse,weak encryption practices,and weak data masking were classified as the second level of security vulnerabilities in database systems,each accounting for 4%of vulnerabilities.The findings from this work can assist organizations in understanding the types of cyber threats and developing robust strategies against cyber-attacks.展开更多
Currently,cybersecurity threats such as data breaches and phishing have been on the rise due to the many differentattack strategies of cyber attackers,significantly increasing risks to individuals and organizations.Tr...Currently,cybersecurity threats such as data breaches and phishing have been on the rise due to the many differentattack strategies of cyber attackers,significantly increasing risks to individuals and organizations.Traditionalsecurity technologies such as intrusion detection have been developed to respond to these cyber threats.Recently,advanced integrated cybersecurity that incorporates Artificial Intelligence has been the focus.In this paper,wepropose a response strategy using a reinforcement-learning-based cyber-attack-defense simulation tool to addresscontinuously evolving cyber threats.Additionally,we have implemented an effective reinforcement-learning-basedcyber-attack scenario using Cyber Battle Simulation,which is a cyber-attack-defense simulator.This scenarioinvolves important security components such as node value,cost,firewalls,and services.Furthermore,we applieda new vulnerability assessment method based on the Common Vulnerability Scoring System.This approach candesign an optimal attack strategy by considering the importance of attack goals,which helps in developing moreeffective response strategies.These attack strategies are evaluated by comparing their performance using a variety ofReinforcement Learning methods.The experimental results show that RL models demonstrate improved learningperformance with the proposed attack strategy compared to the original strategies.In particular,the success rateof the Advantage Actor-Critic-based attack strategy improved by 5.04 percentage points,reaching 10.17%,whichrepresents an impressive 98.24%increase over the original scenario.Consequently,the proposed method canenhance security and risk management capabilities in cyber environments,improving the efficiency of securitymanagement and significantly contributing to the development of security systems.展开更多
This article signals the use of Artificial Intelligence (AI) in information security where its merits, downsides as well as unanticipated negative outcomes are noted. It considers AI based models that can strengthen o...This article signals the use of Artificial Intelligence (AI) in information security where its merits, downsides as well as unanticipated negative outcomes are noted. It considers AI based models that can strengthen or undermine infrastructural functions and organize the networks. In addition, the essay delves into AI’s role in Cyber security software development and the need for AI-resilient strategies that could anticipate and thwart AI-created vulnerabilities. The document also touched on the socioeconomic ramifications of the emergence of AI in Cyber security as well. Looking into AI and security literature, the report outlines benefits including made threat detection precision, extended security ops efficiency, and preventive security tasks. At the same time, it emphasizes the positive side of AI, but it also shows potential limitations such as data bias, lack of interpretability, ethical concerns, and security flaws. The work similarly focuses on the characterized of misuse and sophisticated cyberattacks. The research suggests ways to diminish AI-generating maleficence which comprise ethical AI development, robust safety measures and constant audits and updates. With regard to the AI application in Cyber security, there are both pros and cons in terms of socio-economic issues, for example, job displacement, economic growth and the change in the required workforce skills.展开更多
Cyber security addresses the protection of information systems in cyberspace. These systems face multiple attacks on a daily basis, with the level of complication getting increasingly challenging. Despite the existenc...Cyber security addresses the protection of information systems in cyberspace. These systems face multiple attacks on a daily basis, with the level of complication getting increasingly challenging. Despite the existence of multiple solutions, attackers are still quite successful at identifying vulnerabilities to exploit. This is why cyber deception is increasingly being used to divert attackers’ attention and, therefore, enhance the security of information systems. To be effective, deception environments need fake data. This is where Natural Language (NLP) Processing comes in. Many cyber security models have used NLP for vulnerability detection in information systems, email classification, fake citation detection, and many others. Although it is used for text generation, existing models seem to be unsuitable for data generation in a deception environment. Our goal is to use text generation in NLP to generate data in the deception context that will be used to build multi-level deception in information systems. Our model consists of three (3) components, including the connection component, the deception component, composed of several states in which an attacker may be, depending on whether he is malicious or not, and the text generation component. The text generation component considers as input the real data of the information system and allows the production of several texts as output, which are usable at different deception levels.展开更多
This paper studies cyber risk management by integrating contextual log analysis with User and Entity Behavior Analytics (UEBA). Leveraging Python scripting and PostgreSQL database management, the solution enriches log...This paper studies cyber risk management by integrating contextual log analysis with User and Entity Behavior Analytics (UEBA). Leveraging Python scripting and PostgreSQL database management, the solution enriches log data with contextual and behavioral information from Linux system logs and semantic datasets. By incorporating Common Vulnerability Scoring System (CVSS) metrics and customized risk scoring algorithms, the system calculates Insider Threat scores to identify potential security breaches. The integration of contextual log analysis and UEBA [1] offers a proactive defense against insider threats, reducing false positives and prioritizing high-risk alerts.展开更多
Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes metho...Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes methods through which secure software development processes can be integrated into the Systems Software Development Life-cycle (SDLC) to improve system quality. Cyber-security and quality assurance are both involved in reducing risk. Software security teams work to reduce security risks, whereas quality assurance teams work to decrease risks to quality. There is a need for clear standards, frameworks, processes, and procedures to be followed by organizations to ensure high-level quality while reducing security risks. This research uses a survey of industry professionals to help identify best practices for developing software with fewer defects from the early stages of the SDLC to improve both the quality and security of software. Results show that there is a need for better security awareness among all members of software development teams.展开更多
The increasing utilization of digital technologies presents risks to critical systems due to exploitation by terrorists. Cybersecurity entails proactive and reactive measures designed to protect software and electroni...The increasing utilization of digital technologies presents risks to critical systems due to exploitation by terrorists. Cybersecurity entails proactive and reactive measures designed to protect software and electronic devices from any threats. However, the rising cases of cyber threats are carried out by domestic terrorists who share particular ideologies or grievances. This paper analyzes the increasing cyber-attack instances and mechanisms to counter these threats. Additionally, it addresses the growing concern of domestic terrorism and its impact on national security. Finally, it provides an overview of gaps and possible areas of future research to promote cybersecurity.展开更多
The United States of America faces an increasing number of threats to its critical infrastructure due to cyber-attacks. With the constant advancement of technology and the interconnectedness of various systems, the vu...The United States of America faces an increasing number of threats to its critical infrastructure due to cyber-attacks. With the constant advancement of technology and the interconnectedness of various systems, the vulnerabilities in the nation’s infrastructure have become more pronounced. Cyber-attacks on critical infrastructure, such as power grids, transportation networks, and financial systems, pose a significant risk to national security and public safety. These attacks can disrupt essential services, cause economic losses, and potentially have severe consequences for the well-being of individuals and communities. The rise of cyber-terrorism is also a concern. Cyber-terrorists can exploit vulnerabilities in cyberspace to compromise infrastructure systems, causing chaos and panic among the population. The potential for destructive attacks on critical infrastructure is a pressing issue requiring constant attention and proactive measures.展开更多
This paper explores the convergence of Saudi Arabia’s Vision 2030 with the increasing dependence on the Internet for educational purposes. It sheds light on the potential cybersecurity risks and how parental percepti...This paper explores the convergence of Saudi Arabia’s Vision 2030 with the increasing dependence on the Internet for educational purposes. It sheds light on the potential cybersecurity risks and how parental perception impacts children’s willingness to adapt cybersecurity features. By instilling the significance of cybersecurity awareness in early stages, society can provide children with the necessary skills to navigate the digital realm responsibly. As we progress, ongoing research and collaborative endeavors will be pivotal in formulating effective strategies to shield the digital generation from the potential pitfalls of the virtual realm. Regular Internet usage is essential for various purposes such as communication, education, and leisure. The cohorts of Generation Z and Alpha were born during a period of exponential Internet growth, leading them to heavily engage with the Internet. Consequently, they are equally vulnerable to cybersecurity threats just like adults. Addressing potential security risks for today’s youth becomes the responsibility of parents as the primary line of defense. This research focuses on raising awareness about the imperative of ensuring children’s safety in the online sphere, particularly by their parents. The study is conducted within the specific context of Saudi Arabia, aiming to examine how Saudi parents’ perception of cybersecurity influences their children’s cyber safety. The study identifies critical factors, including attitudes towards cybersecurity, awareness of cybersecurity, and prevailing social norms regarding cybersecurity. These factors contribute to the development of parents’ intention to prioritize cybersecurity, which consequently affects their children’s behaviors in the digital realm. Utilizing a quantitative approach based on a questionnaire, the study employs a Structural Equation Modeling (SEM) framework to analyze the collected data. The study’s findings underscore that parents’ intent towards cybersecurity plays a significant role in shaping their children’s behavior concerning cyber safety.展开更多
In recent years,cyber attacks have been intensifying and causing great harm to individuals,companies,and countries.The mining of cyber threat intelligence(CTI)can facilitate intelligence integration and serve well in ...In recent years,cyber attacks have been intensifying and causing great harm to individuals,companies,and countries.The mining of cyber threat intelligence(CTI)can facilitate intelligence integration and serve well in combating cyber attacks.Named Entity Recognition(NER),as a crucial component of text mining,can structure complex CTI text and aid cybersecurity professionals in effectively countering threats.However,current CTI NER research has mainly focused on studying English CTI.In the limited studies conducted on Chinese text,existing models have shown poor performance.To fully utilize the power of Chinese pre-trained language models(PLMs)and conquer the problem of lengthy infrequent English words mixing in the Chinese CTIs,we propose a residual dilated convolutional neural network(RDCNN)with a conditional random field(CRF)based on a robustly optimized bidirectional encoder representation from transformers pre-training approach with whole word masking(RoBERTa-wwm),abbreviated as RoBERTa-wwm-RDCNN-CRF.We are the first to experiment on the relevant open source dataset and achieve an F1-score of 82.35%,which exceeds the common baseline model bidirectional encoder representation from transformers(BERT)-bidirectional long short-term memory(BiLSTM)-CRF in this field by about 19.52%and exceeds the current state-of-the-art model,BERT-RDCNN-CRF,by about 3.53%.In addition,we conducted an ablation study on the encoder part of the model to verify the effectiveness of the proposed model and an in-depth investigation of the PLMs and encoder part of the model to verify the effectiveness of the proposed model.The RoBERTa-wwm-RDCNN-CRF model,the shared pre-processing,and augmentation methods can serve the subsequent fundamental tasks such as cybersecurity information extraction and knowledge graph construction,contributing to important applications in downstream tasks such as intrusion detection and advanced persistent threat(APT)attack detection.展开更多
The advances in technology increase the number of internet systems usage.As a result,cybersecurity issues have become more common.Cyber threats are one of the main problems in the area of cybersecurity.However,detecti...The advances in technology increase the number of internet systems usage.As a result,cybersecurity issues have become more common.Cyber threats are one of the main problems in the area of cybersecurity.However,detecting cybersecurity threats is not a trivial task and thus is the center of focus for many researchers due to its importance.This study aims to analyze Twitter data to detect cyber threats using a multiclass classification approach.The data is passed through different tasks to prepare it for the analysis.Term Frequency and Inverse Document Frequency(TFIDF)features are extracted to vectorize the cleaned data and several machine learning algorithms are used to classify the Twitter posts into multiple classes of cyber threats.The results are evaluated using different metrics including precision,recall,F-score,and accuracy.This work contributes to the cyber security research area.The experiments revealed the promised results of the analysis using the Random Forest(RF)algorithm with(F-score=81%).This result outperformed the existing studies in the field of cyber threat detection and showed the importance of detecting cyber threats in social media posts.There is a need for more investigation in the field of multiclass classification to achieve more accurate results.In the future,this study suggests applying different data representations for the feature extraction other than TF-IDF such as Word2Vec,and adding a new phase for feature selection to select the optimum features subset to achieve higher accuracy of the detection process.展开更多
As energy-related problems continue to emerge,the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration.Renewable energy is becoming increasingly important,wit...As energy-related problems continue to emerge,the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration.Renewable energy is becoming increasingly important,with solar power accounting for the most significant proportion of renewables.As the scale and importance of solar energy have increased,cyber threats against solar power plants have also increased.So,we need an anomaly detection system that effectively detects cyber threats to solar power plants.However,as mentioned earlier,the existing solar power plant anomaly detection system monitors only operating information such as power generation,making it difficult to detect cyberattacks.To address this issue,in this paper,we propose a network packet-based anomaly detection system for the Programmable Logic Controller(PLC)of the inverter,an essential system of photovoltaic plants,to detect cyber threats.Cyberattacks and vulnerabilities in solar power plants were analyzed to identify cyber threats in solar power plants.The analysis shows that Denial of Service(DoS)and Manin-the-Middle(MitM)attacks are primarily carried out on inverters,aiming to disrupt solar plant operations.To develop an anomaly detection system,we performed preprocessing,such as correlation analysis and normalization for PLC network packets data and trained various machine learning-based classification models on such data.The Random Forest model showed the best performance with an accuracy of 97.36%.The proposed system can detect anomalies based on network packets,identify potential cyber threats that cannot be identified by the anomaly detection system currently in use in solar power plants,and enhance the security of solar plants.展开更多
This paper addressed the current state of police officers’ capabilities, skills, and their readiness to deal with the developments of cybercrime. This study discussed definition of cybercrime, cybercrime categories a...This paper addressed the current state of police officers’ capabilities, skills, and their readiness to deal with the developments of cybercrime. This study discussed definition of cybercrime, cybercrime categories as well as comparison between traditional criminal techniques and cybercrime. As the abilities and skills required for detectives to investigate cybercrime have been discussed. Additionally, literature review and related work, was addressed challenges role of the police in combating cybercrime and facing cybercrime policing. We proposed the main tool in the study which is “Checklist of essential skills for a cybercrime investigator”. Thus, to gain the ability to Identify technical and practical requirements in terms of skills, programs, and equipment to achieve effective and professional results in fight cybercrimes.展开更多
This paper explores the dimensions of resolving disputes in cybersecurity and uses the Federal Arbitration Statute and the Courts to bind the parties to their contracts.The paper explores artificial intelligence and t...This paper explores the dimensions of resolving disputes in cybersecurity and uses the Federal Arbitration Statute and the Courts to bind the parties to their contracts.The paper explores artificial intelligence and the nuances of legal issues that potentially could arise and applies dispute resolution modalities to help businesses become more productive as opposed to being mired down in litigation,creating an efficient path forward.Reading this paper is worth your time because:(1)you will learn how to use the court system to achieve good results in cybersecurity and artificial intelligence disputes applying the Federal Arbitration Statute;(2)you will become more efficient many times over;(3)with so many disputes and so little time,and inflation having increased the cost of doing business,we can ill afford to waste money.Finding solutions that have the full authority of the courts,without going through litigation,is essential to profitability.The need is great to stop fighting and start mending.The method prescribed in this paper solves problems with the support of a court judgment without the entanglement and the expense of litigation.展开更多
This study pursues the objective of analyzing and verifying the knowledge of the agents of the Institut Supérieur Pédagogique/ISP-Bukavu (TTC = Teachers’ training College) in relation to the practical flaws...This study pursues the objective of analyzing and verifying the knowledge of the agents of the Institut Supérieur Pédagogique/ISP-Bukavu (TTC = Teachers’ training College) in relation to the practical flaws resulting from the lack of knowledge of the observable rules in information system security. In a clearer way, it aims to verify the level of knowledge of the vulnerabilities, to verify the level of use of the antivirus software, to analyze the frequency of use of Windows update, the use of an anti-spyware software as well as a firewall software on the computer. Through a survey conducted on a sample of 100 agents of the Institut Supérieur Pédagogique/ISP-Bukavu (TTC = Teachers’ training College), the results revealed that 48% of the sample has no knowledge on computer vulnerabilities;for the use of antivirus software: 47% do not use the antivirus;for Windows update: 29% never update the Windows operating system;for anti-spyware: 48% never use;for the firewall: 50% are not informed. In fine, our results proposed a protection model VMAUSP (Vulnerability Measurability Measures Antivirus, Update, Spyware and Firewall) to users based on the behavioral approach, learning how the model works.展开更多
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
文摘Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm(ABC)as an Nature Inspired Cyber Security mechanism to achieve adaptive defense.It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node.Businesses today have adapted their service distribution models to include the use of the Internet,allowing them to effectively manage and interact with their customer data.This shift has created an increased reliance on online services to store vast amounts of confidential customer data,meaning any disruption or outage of these services could be disastrous for the business,leaving them without the knowledge to serve their customers.Adversaries can exploit such an event to gain unauthorized access to the confidential data of the customers.The proposed algorithm utilizes an Adaptive Defense approach to continuously select nodes that could present characteristics of a probable malicious entity.For any changes in network parameters,the cluster of nodes is selected in the prepared solution set as a probable malicious node and the traffic rate with the ratio of packet delivery is managed with respect to the properties of normal nodes to deliver a disaster recovery plan for potential businesses.
文摘The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.
文摘The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual users and organizations from the online threats of data poaching and pilferage.The widespread usage of Information Technology(IT)and IT Enable Services(ITES)reinforces securitymeasures.The constantly evolving cyber threats are a topic that is generating a lot of discussion.In this league,the present article enlists a broad perspective on how cybercrime is developing in KSA at present and also takes a look at some of the most significant attacks that have taken place in the region.The existing legislative framework and measures in the KSA are geared toward deterring criminal activity online.Different competency models have been devised to address the necessary cybercrime competencies in this context.The research specialists in this domain can benefit more by developing a master competency level for achieving optimum security.To address this research query,the present assessment uses the Fuzzy Decision-Making Trial and Evaluation Laboratory(Fuzzy-DMTAEL),Fuzzy Analytic Hierarchy Process(F.AHP),and Fuzzy TOPSIS methodology to achieve segment-wise competency development in cyber security policy.The similarities and differences between the three methods are also discussed.This cybersecurity analysis determined that the National Cyber Security Centre got the highest priority.The study concludes by perusing the challenges that still need to be examined and resolved in effectuating more credible and efficacious online security mechanisms to offer amoreempowered ITES-driven economy for SaudiArabia.Moreover,cybersecurity specialists and policymakers need to collate their efforts to protect the country’s digital assets in the era of overt and covert cyber warfare.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant No.KFU242068).
文摘Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store.Despite the increasing reliance on database management systems,this field continues to face numerous cyber-attacks.Database management systems serve as the foundation of any information system or application.Any cyber-attack can result in significant damage to the database system and loss of sensitive data.Consequently,cyber risk classifications and assessments play a crucial role in risk management and establish an essential framework for identifying and responding to cyber threats.Risk assessment aids in understanding the impact of cyber threats and developing appropriate security controls to mitigate risks.The primary objective of this study is to conduct a comprehensive analysis of cyber risks in database management systems,including classifying threats,vulnerabilities,impacts,and countermeasures.This classification helps to identify suitable security controls to mitigate cyber risks for each type of threat.Additionally,this research aims to explore technical countermeasures to protect database systems from cyber threats.This study employs the content analysis method to collect,analyze,and classify data in terms of types of threats,vulnerabilities,and countermeasures.The results indicate that SQL injection attacks and Denial of Service(DoS)attacks were the most prevalent technical threats in database systems,each accounting for 9%of incidents.Vulnerable audit trails,intrusion attempts,and ransomware attacks were classified as the second level of technical threats in database systems,comprising 7%and 5%of incidents,respectively.Furthermore,the findings reveal that insider threats were the most common non-technical threats in database systems,accounting for 5%of incidents.Moreover,the results indicate that weak authentication,unpatched databases,weak audit trails,and multiple usage of an account were the most common technical vulnerabilities in database systems,each accounting for 9%of vulnerabilities.Additionally,software bugs,insecure coding practices,weak security controls,insecure networks,password misuse,weak encryption practices,and weak data masking were classified as the second level of security vulnerabilities in database systems,each accounting for 4%of vulnerabilities.The findings from this work can assist organizations in understanding the types of cyber threats and developing robust strategies against cyber-attacks.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea Government(MSIT)(No.RS2022-II220961).
文摘Currently,cybersecurity threats such as data breaches and phishing have been on the rise due to the many differentattack strategies of cyber attackers,significantly increasing risks to individuals and organizations.Traditionalsecurity technologies such as intrusion detection have been developed to respond to these cyber threats.Recently,advanced integrated cybersecurity that incorporates Artificial Intelligence has been the focus.In this paper,wepropose a response strategy using a reinforcement-learning-based cyber-attack-defense simulation tool to addresscontinuously evolving cyber threats.Additionally,we have implemented an effective reinforcement-learning-basedcyber-attack scenario using Cyber Battle Simulation,which is a cyber-attack-defense simulator.This scenarioinvolves important security components such as node value,cost,firewalls,and services.Furthermore,we applieda new vulnerability assessment method based on the Common Vulnerability Scoring System.This approach candesign an optimal attack strategy by considering the importance of attack goals,which helps in developing moreeffective response strategies.These attack strategies are evaluated by comparing their performance using a variety ofReinforcement Learning methods.The experimental results show that RL models demonstrate improved learningperformance with the proposed attack strategy compared to the original strategies.In particular,the success rateof the Advantage Actor-Critic-based attack strategy improved by 5.04 percentage points,reaching 10.17%,whichrepresents an impressive 98.24%increase over the original scenario.Consequently,the proposed method canenhance security and risk management capabilities in cyber environments,improving the efficiency of securitymanagement and significantly contributing to the development of security systems.
文摘This article signals the use of Artificial Intelligence (AI) in information security where its merits, downsides as well as unanticipated negative outcomes are noted. It considers AI based models that can strengthen or undermine infrastructural functions and organize the networks. In addition, the essay delves into AI’s role in Cyber security software development and the need for AI-resilient strategies that could anticipate and thwart AI-created vulnerabilities. The document also touched on the socioeconomic ramifications of the emergence of AI in Cyber security as well. Looking into AI and security literature, the report outlines benefits including made threat detection precision, extended security ops efficiency, and preventive security tasks. At the same time, it emphasizes the positive side of AI, but it also shows potential limitations such as data bias, lack of interpretability, ethical concerns, and security flaws. The work similarly focuses on the characterized of misuse and sophisticated cyberattacks. The research suggests ways to diminish AI-generating maleficence which comprise ethical AI development, robust safety measures and constant audits and updates. With regard to the AI application in Cyber security, there are both pros and cons in terms of socio-economic issues, for example, job displacement, economic growth and the change in the required workforce skills.
文摘Cyber security addresses the protection of information systems in cyberspace. These systems face multiple attacks on a daily basis, with the level of complication getting increasingly challenging. Despite the existence of multiple solutions, attackers are still quite successful at identifying vulnerabilities to exploit. This is why cyber deception is increasingly being used to divert attackers’ attention and, therefore, enhance the security of information systems. To be effective, deception environments need fake data. This is where Natural Language (NLP) Processing comes in. Many cyber security models have used NLP for vulnerability detection in information systems, email classification, fake citation detection, and many others. Although it is used for text generation, existing models seem to be unsuitable for data generation in a deception environment. Our goal is to use text generation in NLP to generate data in the deception context that will be used to build multi-level deception in information systems. Our model consists of three (3) components, including the connection component, the deception component, composed of several states in which an attacker may be, depending on whether he is malicious or not, and the text generation component. The text generation component considers as input the real data of the information system and allows the production of several texts as output, which are usable at different deception levels.
文摘This paper studies cyber risk management by integrating contextual log analysis with User and Entity Behavior Analytics (UEBA). Leveraging Python scripting and PostgreSQL database management, the solution enriches log data with contextual and behavioral information from Linux system logs and semantic datasets. By incorporating Common Vulnerability Scoring System (CVSS) metrics and customized risk scoring algorithms, the system calculates Insider Threat scores to identify potential security breaches. The integration of contextual log analysis and UEBA [1] offers a proactive defense against insider threats, reducing false positives and prioritizing high-risk alerts.
文摘Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes methods through which secure software development processes can be integrated into the Systems Software Development Life-cycle (SDLC) to improve system quality. Cyber-security and quality assurance are both involved in reducing risk. Software security teams work to reduce security risks, whereas quality assurance teams work to decrease risks to quality. There is a need for clear standards, frameworks, processes, and procedures to be followed by organizations to ensure high-level quality while reducing security risks. This research uses a survey of industry professionals to help identify best practices for developing software with fewer defects from the early stages of the SDLC to improve both the quality and security of software. Results show that there is a need for better security awareness among all members of software development teams.
文摘The increasing utilization of digital technologies presents risks to critical systems due to exploitation by terrorists. Cybersecurity entails proactive and reactive measures designed to protect software and electronic devices from any threats. However, the rising cases of cyber threats are carried out by domestic terrorists who share particular ideologies or grievances. This paper analyzes the increasing cyber-attack instances and mechanisms to counter these threats. Additionally, it addresses the growing concern of domestic terrorism and its impact on national security. Finally, it provides an overview of gaps and possible areas of future research to promote cybersecurity.
文摘The United States of America faces an increasing number of threats to its critical infrastructure due to cyber-attacks. With the constant advancement of technology and the interconnectedness of various systems, the vulnerabilities in the nation’s infrastructure have become more pronounced. Cyber-attacks on critical infrastructure, such as power grids, transportation networks, and financial systems, pose a significant risk to national security and public safety. These attacks can disrupt essential services, cause economic losses, and potentially have severe consequences for the well-being of individuals and communities. The rise of cyber-terrorism is also a concern. Cyber-terrorists can exploit vulnerabilities in cyberspace to compromise infrastructure systems, causing chaos and panic among the population. The potential for destructive attacks on critical infrastructure is a pressing issue requiring constant attention and proactive measures.
文摘This paper explores the convergence of Saudi Arabia’s Vision 2030 with the increasing dependence on the Internet for educational purposes. It sheds light on the potential cybersecurity risks and how parental perception impacts children’s willingness to adapt cybersecurity features. By instilling the significance of cybersecurity awareness in early stages, society can provide children with the necessary skills to navigate the digital realm responsibly. As we progress, ongoing research and collaborative endeavors will be pivotal in formulating effective strategies to shield the digital generation from the potential pitfalls of the virtual realm. Regular Internet usage is essential for various purposes such as communication, education, and leisure. The cohorts of Generation Z and Alpha were born during a period of exponential Internet growth, leading them to heavily engage with the Internet. Consequently, they are equally vulnerable to cybersecurity threats just like adults. Addressing potential security risks for today’s youth becomes the responsibility of parents as the primary line of defense. This research focuses on raising awareness about the imperative of ensuring children’s safety in the online sphere, particularly by their parents. The study is conducted within the specific context of Saudi Arabia, aiming to examine how Saudi parents’ perception of cybersecurity influences their children’s cyber safety. The study identifies critical factors, including attitudes towards cybersecurity, awareness of cybersecurity, and prevailing social norms regarding cybersecurity. These factors contribute to the development of parents’ intention to prioritize cybersecurity, which consequently affects their children’s behaviors in the digital realm. Utilizing a quantitative approach based on a questionnaire, the study employs a Structural Equation Modeling (SEM) framework to analyze the collected data. The study’s findings underscore that parents’ intent towards cybersecurity plays a significant role in shaping their children’s behavior concerning cyber safety.
基金funded by the Double Top-Class Innovation Research Project in Cyberspace Security Enforcement Technology of People’s Public Security University of China(No.2023SYL07).
文摘In recent years,cyber attacks have been intensifying and causing great harm to individuals,companies,and countries.The mining of cyber threat intelligence(CTI)can facilitate intelligence integration and serve well in combating cyber attacks.Named Entity Recognition(NER),as a crucial component of text mining,can structure complex CTI text and aid cybersecurity professionals in effectively countering threats.However,current CTI NER research has mainly focused on studying English CTI.In the limited studies conducted on Chinese text,existing models have shown poor performance.To fully utilize the power of Chinese pre-trained language models(PLMs)and conquer the problem of lengthy infrequent English words mixing in the Chinese CTIs,we propose a residual dilated convolutional neural network(RDCNN)with a conditional random field(CRF)based on a robustly optimized bidirectional encoder representation from transformers pre-training approach with whole word masking(RoBERTa-wwm),abbreviated as RoBERTa-wwm-RDCNN-CRF.We are the first to experiment on the relevant open source dataset and achieve an F1-score of 82.35%,which exceeds the common baseline model bidirectional encoder representation from transformers(BERT)-bidirectional long short-term memory(BiLSTM)-CRF in this field by about 19.52%and exceeds the current state-of-the-art model,BERT-RDCNN-CRF,by about 3.53%.In addition,we conducted an ablation study on the encoder part of the model to verify the effectiveness of the proposed model and an in-depth investigation of the PLMs and encoder part of the model to verify the effectiveness of the proposed model.The RoBERTa-wwm-RDCNN-CRF model,the shared pre-processing,and augmentation methods can serve the subsequent fundamental tasks such as cybersecurity information extraction and knowledge graph construction,contributing to important applications in downstream tasks such as intrusion detection and advanced persistent threat(APT)attack detection.
基金funded by Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,Project Number MoE-IF-UJ-22-04100409-5.
文摘The advances in technology increase the number of internet systems usage.As a result,cybersecurity issues have become more common.Cyber threats are one of the main problems in the area of cybersecurity.However,detecting cybersecurity threats is not a trivial task and thus is the center of focus for many researchers due to its importance.This study aims to analyze Twitter data to detect cyber threats using a multiclass classification approach.The data is passed through different tasks to prepare it for the analysis.Term Frequency and Inverse Document Frequency(TFIDF)features are extracted to vectorize the cleaned data and several machine learning algorithms are used to classify the Twitter posts into multiple classes of cyber threats.The results are evaluated using different metrics including precision,recall,F-score,and accuracy.This work contributes to the cyber security research area.The experiments revealed the promised results of the analysis using the Random Forest(RF)algorithm with(F-score=81%).This result outperformed the existing studies in the field of cyber threat detection and showed the importance of detecting cyber threats in social media posts.There is a need for more investigation in the field of multiclass classification to achieve more accurate results.In the future,this study suggests applying different data representations for the feature extraction other than TF-IDF such as Word2Vec,and adding a new phase for feature selection to select the optimum features subset to achieve higher accuracy of the detection process.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(20224B10100140,50%)the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety(KoFONS)using the financial resource granted by the Nuclear Safety and Security Commission(NSSC)of the Republic of Korea(No.2106058,40%)the Gachon University Research Fund of 2023(GCU-202110280001,10%)。
文摘As energy-related problems continue to emerge,the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration.Renewable energy is becoming increasingly important,with solar power accounting for the most significant proportion of renewables.As the scale and importance of solar energy have increased,cyber threats against solar power plants have also increased.So,we need an anomaly detection system that effectively detects cyber threats to solar power plants.However,as mentioned earlier,the existing solar power plant anomaly detection system monitors only operating information such as power generation,making it difficult to detect cyberattacks.To address this issue,in this paper,we propose a network packet-based anomaly detection system for the Programmable Logic Controller(PLC)of the inverter,an essential system of photovoltaic plants,to detect cyber threats.Cyberattacks and vulnerabilities in solar power plants were analyzed to identify cyber threats in solar power plants.The analysis shows that Denial of Service(DoS)and Manin-the-Middle(MitM)attacks are primarily carried out on inverters,aiming to disrupt solar plant operations.To develop an anomaly detection system,we performed preprocessing,such as correlation analysis and normalization for PLC network packets data and trained various machine learning-based classification models on such data.The Random Forest model showed the best performance with an accuracy of 97.36%.The proposed system can detect anomalies based on network packets,identify potential cyber threats that cannot be identified by the anomaly detection system currently in use in solar power plants,and enhance the security of solar plants.
文摘This paper addressed the current state of police officers’ capabilities, skills, and their readiness to deal with the developments of cybercrime. This study discussed definition of cybercrime, cybercrime categories as well as comparison between traditional criminal techniques and cybercrime. As the abilities and skills required for detectives to investigate cybercrime have been discussed. Additionally, literature review and related work, was addressed challenges role of the police in combating cybercrime and facing cybercrime policing. We proposed the main tool in the study which is “Checklist of essential skills for a cybercrime investigator”. Thus, to gain the ability to Identify technical and practical requirements in terms of skills, programs, and equipment to achieve effective and professional results in fight cybercrimes.
文摘This paper explores the dimensions of resolving disputes in cybersecurity and uses the Federal Arbitration Statute and the Courts to bind the parties to their contracts.The paper explores artificial intelligence and the nuances of legal issues that potentially could arise and applies dispute resolution modalities to help businesses become more productive as opposed to being mired down in litigation,creating an efficient path forward.Reading this paper is worth your time because:(1)you will learn how to use the court system to achieve good results in cybersecurity and artificial intelligence disputes applying the Federal Arbitration Statute;(2)you will become more efficient many times over;(3)with so many disputes and so little time,and inflation having increased the cost of doing business,we can ill afford to waste money.Finding solutions that have the full authority of the courts,without going through litigation,is essential to profitability.The need is great to stop fighting and start mending.The method prescribed in this paper solves problems with the support of a court judgment without the entanglement and the expense of litigation.
文摘This study pursues the objective of analyzing and verifying the knowledge of the agents of the Institut Supérieur Pédagogique/ISP-Bukavu (TTC = Teachers’ training College) in relation to the practical flaws resulting from the lack of knowledge of the observable rules in information system security. In a clearer way, it aims to verify the level of knowledge of the vulnerabilities, to verify the level of use of the antivirus software, to analyze the frequency of use of Windows update, the use of an anti-spyware software as well as a firewall software on the computer. Through a survey conducted on a sample of 100 agents of the Institut Supérieur Pédagogique/ISP-Bukavu (TTC = Teachers’ training College), the results revealed that 48% of the sample has no knowledge on computer vulnerabilities;for the use of antivirus software: 47% do not use the antivirus;for Windows update: 29% never update the Windows operating system;for anti-spyware: 48% never use;for the firewall: 50% are not informed. In fine, our results proposed a protection model VMAUSP (Vulnerability Measurability Measures Antivirus, Update, Spyware and Firewall) to users based on the behavioral approach, learning how the model works.