Let G = (V, E) be a graph and C<sub>m</sub> be the cycle graph with m vertices. In this paper, we continued Yeh’s work [1] on the distance labeling of the cycle graph Cm</sub>. An n-set distance lab...Let G = (V, E) be a graph and C<sub>m</sub> be the cycle graph with m vertices. In this paper, we continued Yeh’s work [1] on the distance labeling of the cycle graph Cm</sub>. An n-set distance labeling of a graph G is the labeling of the vertices (with n labels per vertex) of G under certain constraints depending on the distance between each pair of the vertices in G. Following Yeh’s notation [1], the smallest value for the largest label in an n-set distance labeling of G is denoted by λ<sub>1</sub><sup>(n)</sup>(G). Basic results were presented in [1] for λ1</sub>(2)</sup>(C<sub>m</sub>) for all m and λ1</sub>(n)</sup>(C<sub>m</sub>) for some m where n ≥ 3. However, there were still gaps left unstudied due to case-by-case complexities. For these uncovered cases, we proved a lower bound for λ1</sub>(n)</sup>(C<sub>m</sub>). Then we proposed an algorithm for finding an n-set distance labeling for n ≥ 3 based on our proof of the lower bound. We verified every single case for n = 3 up to n = 500 by this same algorithm, which indicated that the upper bound is the same as the lower bound for n ≤ 500.展开更多
G. C. Ying, Y. Y. Meng, B. E. Sagan, and V. R. Vatter [1] found the maximum number of maximal independent sets in connected graphs which contain at most two cycles. In this paper, we give an alternative proof to deter...G. C. Ying, Y. Y. Meng, B. E. Sagan, and V. R. Vatter [1] found the maximum number of maximal independent sets in connected graphs which contain at most two cycles. In this paper, we give an alternative proof to determine the largest number of maximal independent sets among all connected graphs of order n ≥ 12, which contain at most two cycles. We also characterize the extremal graph achieving this maximum value.展开更多
In this paper,we prove that there does not exist an r-UPC[2]-graph for each r≥5 and there does not exist an r-UPC[C_t^2]-graph for each r≥3,where t is the number of bridges in a graph and C_t^2 is the number of comb...In this paper,we prove that there does not exist an r-UPC[2]-graph for each r≥5 and there does not exist an r-UPC[C_t^2]-graph for each r≥3,where t is the number of bridges in a graph and C_t^2 is the number of combinations of t bridges taken 2 at a time.展开更多
A simple graph G on n vettices is said to be a simple MCD-graph if G has no two cyties having the same length and has the maximum possible number of edges.Two results of the number of cy cles in G are given by introdu...A simple graph G on n vettices is said to be a simple MCD-graph if G has no two cyties having the same length and has the maximum possible number of edges.Two results of the number of cy cles in G are given by introdueing the Concept of a path decomposition and by them,the following theorem is proved:If G is a simple MCD-graph,then G is not a 2-connected planar graph and for all n except seven integer,G is not a 2-connected graph on n vertices containing a subgraph homeomor phic to K_4.展开更多
In this paper we prove that if G is a planar graph with △= 5 and without 4-cycles or 6-cycles, then G is edge-6-choosable. This consequence together with known results show that, for each fixed k ∈{3,4,5,6}, a k-cyc...In this paper we prove that if G is a planar graph with △= 5 and without 4-cycles or 6-cycles, then G is edge-6-choosable. This consequence together with known results show that, for each fixed k ∈{3,4,5,6}, a k-cycle-free planar graph G is edge-(△+ 1)-choosable, where △ denotes the maximum degree of G.展开更多
An independent set in a graph G is a set of pairwise non-adjacent vertices.Let ik(G)denote the number of independent sets of cardinality k in G.Then its generating function I(G;x)=∑^(α(G))^(k=0)ik(G)x^(k),is called ...An independent set in a graph G is a set of pairwise non-adjacent vertices.Let ik(G)denote the number of independent sets of cardinality k in G.Then its generating function I(G;x)=∑^(α(G))^(k=0)ik(G)x^(k),is called the independence polynomial of G(Gutman and Harary,1983).In this paper,we introduce a new graph operation called the cycle cover product and formulate its independence polynomial.We also give a criterion for formulating the independence polynomial of a graph.Based on the exact formulas,we prove some results on symmetry,unimodality,reality of zeros of independence polynomials of some graphs.As applications,we give some new constructions for graphs having symmetric and unimodal independence polynomials.展开更多
LetGbe a planar graph with maximum degreeΔ.In this paper,we prove that if any4-cycle is not adjacent to ani-cycle for anyi∈{3,4}in G,then the list edge chromatic numberχl(G)=Δand the list total chromatic number...LetGbe a planar graph with maximum degreeΔ.In this paper,we prove that if any4-cycle is not adjacent to ani-cycle for anyi∈{3,4}in G,then the list edge chromatic numberχl(G)=Δand the list total chromatic numberχl(G)=Δ+1.展开更多
The concept of the star chromatic number of a graph was introduced by A.Vince in ,which is a natural generalizition of the chromatic number of a graph.In this paper,we investigate the star chromatic number of a famil...The concept of the star chromatic number of a graph was introduced by A.Vince in ,which is a natural generalizition of the chromatic number of a graph.In this paper,we investigate the star chromatic number of a family of planar graphs.More precisely, a family of planar graphs whose star chromatic numbers are between 2 and 3 are disscused,which answers the open problem posed by Vince in .展开更多
Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the...Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the execution cost, the sequential diagnosis strategy obtained by previous methods is actually not optimal from the view of life cycle. In this paper, the test sequencing problem based on life cycle cost is presented. It is formulated as an optimization problem, which is non-deterministic polynomial-time hard (NP-hard). An algorithm and a strategy to improve its computational efficiency are proposed. The formulation and algorithms are tested on various simulated systems and comparisons are made with the extant test sequencing methods. Application on a pump rotational speed control (PRSC) system of a spacecraft is studied in detail. Both the simulation results and the real-world case application results suggest that the solution proposed in this paper can significantly reduce the life cycle cost of a sequential fault diagnosis strategy.展开更多
文摘Let G = (V, E) be a graph and C<sub>m</sub> be the cycle graph with m vertices. In this paper, we continued Yeh’s work [1] on the distance labeling of the cycle graph Cm</sub>. An n-set distance labeling of a graph G is the labeling of the vertices (with n labels per vertex) of G under certain constraints depending on the distance between each pair of the vertices in G. Following Yeh’s notation [1], the smallest value for the largest label in an n-set distance labeling of G is denoted by λ<sub>1</sub><sup>(n)</sup>(G). Basic results were presented in [1] for λ1</sub>(2)</sup>(C<sub>m</sub>) for all m and λ1</sub>(n)</sup>(C<sub>m</sub>) for some m where n ≥ 3. However, there were still gaps left unstudied due to case-by-case complexities. For these uncovered cases, we proved a lower bound for λ1</sub>(n)</sup>(C<sub>m</sub>). Then we proposed an algorithm for finding an n-set distance labeling for n ≥ 3 based on our proof of the lower bound. We verified every single case for n = 3 up to n = 500 by this same algorithm, which indicated that the upper bound is the same as the lower bound for n ≤ 500.
文摘G. C. Ying, Y. Y. Meng, B. E. Sagan, and V. R. Vatter [1] found the maximum number of maximal independent sets in connected graphs which contain at most two cycles. In this paper, we give an alternative proof to determine the largest number of maximal independent sets among all connected graphs of order n ≥ 12, which contain at most two cycles. We also characterize the extremal graph achieving this maximum value.
文摘In this paper,we prove that there does not exist an r-UPC[2]-graph for each r≥5 and there does not exist an r-UPC[C_t^2]-graph for each r≥3,where t is the number of bridges in a graph and C_t^2 is the number of combinations of t bridges taken 2 at a time.
文摘A simple graph G on n vettices is said to be a simple MCD-graph if G has no two cyties having the same length and has the maximum possible number of edges.Two results of the number of cy cles in G are given by introdueing the Concept of a path decomposition and by them,the following theorem is proved:If G is a simple MCD-graph,then G is not a 2-connected planar graph and for all n except seven integer,G is not a 2-connected graph on n vertices containing a subgraph homeomor phic to K_4.
基金supported partially by the National Natural Science Foundation of China(Grant No.10471 131)the Natural Science Foundation of Zhejiang Province(Grant No.M103094)
文摘In this paper we prove that if G is a planar graph with △= 5 and without 4-cycles or 6-cycles, then G is edge-6-choosable. This consequence together with known results show that, for each fixed k ∈{3,4,5,6}, a k-cycle-free planar graph G is edge-(△+ 1)-choosable, where △ denotes the maximum degree of G.
基金Supported by National Natural Science Foundation of China(Grant Nos.11971206,12022105)Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(Grant No.BK20200048)。
文摘An independent set in a graph G is a set of pairwise non-adjacent vertices.Let ik(G)denote the number of independent sets of cardinality k in G.Then its generating function I(G;x)=∑^(α(G))^(k=0)ik(G)x^(k),is called the independence polynomial of G(Gutman and Harary,1983).In this paper,we introduce a new graph operation called the cycle cover product and formulate its independence polynomial.We also give a criterion for formulating the independence polynomial of a graph.Based on the exact formulas,we prove some results on symmetry,unimodality,reality of zeros of independence polynomials of some graphs.As applications,we give some new constructions for graphs having symmetric and unimodal independence polynomials.
基金Supported by National Natural Science Foundation of China(Grant Nos.11201440 and 11271006)Graduate Independent Innovation Foundation of Shandong University(Grant No.yzc12100)
文摘LetGbe a planar graph with maximum degreeΔ.In this paper,we prove that if any4-cycle is not adjacent to ani-cycle for anyi∈{3,4}in G,then the list edge chromatic numberχl(G)=Δand the list total chromatic numberχl(G)=Δ+1.
文摘The concept of the star chromatic number of a graph was introduced by A.Vince in ,which is a natural generalizition of the chromatic number of a graph.In this paper,we investigate the star chromatic number of a family of planar graphs.More precisely, a family of planar graphs whose star chromatic numbers are between 2 and 3 are disscused,which answers the open problem posed by Vince in .
基金supported by China Civil Space Foundation(No.C1320063131)
文摘Previous test sequencing algorithms only consider the execution cost of a test at the application stage. Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the execution cost, the sequential diagnosis strategy obtained by previous methods is actually not optimal from the view of life cycle. In this paper, the test sequencing problem based on life cycle cost is presented. It is formulated as an optimization problem, which is non-deterministic polynomial-time hard (NP-hard). An algorithm and a strategy to improve its computational efficiency are proposed. The formulation and algorithms are tested on various simulated systems and comparisons are made with the extant test sequencing methods. Application on a pump rotational speed control (PRSC) system of a spacecraft is studied in detail. Both the simulation results and the real-world case application results suggest that the solution proposed in this paper can significantly reduce the life cycle cost of a sequential fault diagnosis strategy.