Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were in...Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were investigated. Hydrocarbon composition of gasoline was analyzed by gas chromatograph. Experimental results showed that conversion of cycle oil was low on account of its poor crackability performance, and the effect of reaction conditions on gasoline yield was obvi- ous. The paraffin content was very high in gasoline. Based on the experimental yields under different reaction conditions, a model for prediction of gasoline and diesel yields was established by radial basis function neural network (RBFNN). In the model, the product yield was viewed as function of reaction conditions. Particle swarm optimization (PSO) algorithm with global search capability was used to obtain optimal conditions for a highest yield of light oil. The results showed that the yield of gasoline and diesel predicted by RBF neural network agreed well with the experimental values. The optimized reac- tion conditions were obtained at a reaction temperature of around 520 ~C, a catalyst to oil ratio of 7.4 and a space velocity of 8 h~. The predicted total yield of gasoline and diesel reached 42.2% under optimized conditions.展开更多
Canola oil and light cycle oil (LCO) blends were co-hydrotreated over a commercial hydrotreating catalyst (NiMo/Al2O3) to produce diesel fuel with a green diesel component. High hydrodeoxygenation, hydrodesul- phu...Canola oil and light cycle oil (LCO) blends were co-hydrotreated over a commercial hydrotreating catalyst (NiMo/Al2O3) to produce diesel fuel with a green diesel component. High hydrodeoxygenation, hydrodesul- phurization and hydrodenitrogenation catalytic activities were achieved for all three feedstocks tested in the temperature range of 350-380℃ with a hydrogen pressure of 7 MPa and a gas/oil ratio of 800 nL/L. The hydrocrack- ing conversion of the 360℃ + materials in the feedstocks increased by 5% and 15% when 5 and 7.5 wt-% canola oil was added to the LCO, respectively. Compared to the pure LCO, the cetane index of the diesel product formed from hydrotreating the two canola oil-LCO blends increased by 2.5 and 4, respectively. Due to the higher hydrogen requirement to crack and deoxygenate the triglycerides contained in the canola oil, a higher hydrogen consumption was needed to hydrotreat the canola oil-LCO blends.展开更多
After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catal...After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catalytic cracking called RICP which does not further recycles the FCC heavy cycle oil (HCO) inside the FCC unit and delivers HCO to the residue hydrotreating unit as a diluting oil for the residue that is concurrently subjected to hydrotreating prior to being used as the FCC feed oil. The RICP technology can stimulate residue hydrotreating reactions through utilization of HCO along with an in- creased yield of FCC light distillate, resulting in enhanced petroleum utilization and economic benefits of the refinery.展开更多
Increasing gasoline production in FCC unit can improve the utilization efficiency of petroleum resources and gain economic benefit.This paper discusses the technical principles for increasing FCC gasoline yield from t...Increasing gasoline production in FCC unit can improve the utilization efficiency of petroleum resources and gain economic benefit.This paper discusses the technical principles for increasing FCC gasoline yield from the aspects of feedstock properties,operating conditions,LCO(light cycle oil)recycling,catalyst selection and reactor type,and illustrates the industrial application examples for maximizing gasoline production.The technical measures,such as optimizing the feedstock,properly increasing the catalyst activity and reaction temperature,recycling LCO or hydrotreated LCO,applying high gasoline yield catalyst,and adopting the two-zone riser reactor,are proposed to enhance the gasoline yield.展开更多
基金support of the Chinese National Program for Fundamental Research and Development(973 program)(2012CB215006)
文摘Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were investigated. Hydrocarbon composition of gasoline was analyzed by gas chromatograph. Experimental results showed that conversion of cycle oil was low on account of its poor crackability performance, and the effect of reaction conditions on gasoline yield was obvi- ous. The paraffin content was very high in gasoline. Based on the experimental yields under different reaction conditions, a model for prediction of gasoline and diesel yields was established by radial basis function neural network (RBFNN). In the model, the product yield was viewed as function of reaction conditions. Particle swarm optimization (PSO) algorithm with global search capability was used to obtain optimal conditions for a highest yield of light oil. The results showed that the yield of gasoline and diesel predicted by RBF neural network agreed well with the experimental values. The optimized reac- tion conditions were obtained at a reaction temperature of around 520 ~C, a catalyst to oil ratio of 7.4 and a space velocity of 8 h~. The predicted total yield of gasoline and diesel reached 42.2% under optimized conditions.
文摘Canola oil and light cycle oil (LCO) blends were co-hydrotreated over a commercial hydrotreating catalyst (NiMo/Al2O3) to produce diesel fuel with a green diesel component. High hydrodeoxygenation, hydrodesul- phurization and hydrodenitrogenation catalytic activities were achieved for all three feedstocks tested in the temperature range of 350-380℃ with a hydrogen pressure of 7 MPa and a gas/oil ratio of 800 nL/L. The hydrocrack- ing conversion of the 360℃ + materials in the feedstocks increased by 5% and 15% when 5 and 7.5 wt-% canola oil was added to the LCO, respectively. Compared to the pure LCO, the cetane index of the diesel product formed from hydrotreating the two canola oil-LCO blends increased by 2.5 and 4, respectively. Due to the higher hydrogen requirement to crack and deoxygenate the triglycerides contained in the canola oil, a higher hydrogen consumption was needed to hydrotreat the canola oil-LCO blends.
文摘After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catalytic cracking called RICP which does not further recycles the FCC heavy cycle oil (HCO) inside the FCC unit and delivers HCO to the residue hydrotreating unit as a diluting oil for the residue that is concurrently subjected to hydrotreating prior to being used as the FCC feed oil. The RICP technology can stimulate residue hydrotreating reactions through utilization of HCO along with an in- creased yield of FCC light distillate, resulting in enhanced petroleum utilization and economic benefits of the refinery.
文摘Increasing gasoline production in FCC unit can improve the utilization efficiency of petroleum resources and gain economic benefit.This paper discusses the technical principles for increasing FCC gasoline yield from the aspects of feedstock properties,operating conditions,LCO(light cycle oil)recycling,catalyst selection and reactor type,and illustrates the industrial application examples for maximizing gasoline production.The technical measures,such as optimizing the feedstock,properly increasing the catalyst activity and reaction temperature,recycling LCO or hydrotreated LCO,applying high gasoline yield catalyst,and adopting the two-zone riser reactor,are proposed to enhance the gasoline yield.