The dominant annual cycle of sea surface temperature(SST)in the tropical Pacific exhibits an antisymmetric mode,which explains 83.4%total variance,and serves as a background of El Niño-Southern Oscillation(ENSO)....The dominant annual cycle of sea surface temperature(SST)in the tropical Pacific exhibits an antisymmetric mode,which explains 83.4%total variance,and serves as a background of El Niño-Southern Oscillation(ENSO).However,there is no consensus yet on its anomalous impacts on the phase and amplitude of ENSO.Based on data during 1982-2022,results show that anomalies of the antisymmetric mode can affect the evolution of ENSO on the interannual scale via Bjerknes feedback,in which the positive(negative)phase of the antisymmetric mode can strengthen El Niño(La Niña)in boreal winter via an earlier(delayed)seasonal cycle transition and larger(smaller)annual mean.The magnitude of the SST anomalies in the equatorial eastern Pacific can reach more than±0.3◦C,regulated by the changes in the antisymmetric mode based on random sensitivity analysis.Results reveal the spatial pattern of the annual cycle associated with the seasonal phase-locking of ENSO evolution and provide new insight into the impact of the annual cycle of background SST on ENSO,which possibly carries important implications for forecasting ENSO.展开更多
Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while al...Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.展开更多
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol...A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.展开更多
BACKGROUND:This study aimed to review bicycle-related injuries during the COVID-19 pandemic to assist with reinforcement or implementation of new policies for injury prevention.METHODS:This is a retrospective descript...BACKGROUND:This study aimed to review bicycle-related injuries during the COVID-19 pandemic to assist with reinforcement or implementation of new policies for injury prevention.METHODS:This is a retrospective descriptive analysis of injuries sustained during cycling for patients 18 years old and above who presented to Singapore General Hospital from January to June 2021.Medical records were reviewed and consolidated.Descriptive analyses were used to summarize patient characteristics,and differences in characteristics subgrouped by triage acuity and discharge status were analyzed.RESULTS:The study included 272 patients with a mean age of 43 years and a male predominance(71.7%).Most presented without referrals(88.2%)and were not conveyed by ambulances(70.6%).Based on acuity category,there were 24(8.8%)Priority 1(P1)patients with 7 trauma activations,174(64.0%)and 74(27.2%)P2 and P3 patients respectively.The most common injuries were fractures(34.2%),followed by superficial abrasion/contusion(29.4%)and laceration/wound(19.1%).Thirteen(4.8%)patients experienced head injury and 85 patients(31.3%)were documented to be wearing a helmet.The majority occurred on the roads as traffic accidents(32.7%).Forty-two patients(15.4%)were admitted with a mean length of stay of 4.1 d and 17(6.3%)undergone surgical procedures.Out of 214(78.7%)discharged patients,no re-attendances or mortality were observed.In the subgroup analysis,higher acuity patients were generally older,with higher proportions of head injuries leading to admission.CONCLUSION:Our study highlights significant morbidities in bicycle-related injuries.There is also a high proportion of fractures in the young healthy male population.Injury prevention is paramount and we propose emphasizing helmet use and road user safety.展开更多
Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic character...Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7% after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 m m under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions.展开更多
Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induce...Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications.展开更多
Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments s...Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies.展开更多
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto...The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.展开更多
Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and th...Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities.展开更多
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
The pursuit of high-energy cathode materials has been focused on raising the charging cutoff voltage of nickel (Ni)-rich layered oxide cathode such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O2 (NCM811). However, the NCM811 suffers...The pursuit of high-energy cathode materials has been focused on raising the charging cutoff voltage of nickel (Ni)-rich layered oxide cathode such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O2 (NCM811). However, the NCM811 suffers from rapid capacity fading upon cycling at cutoff voltage higher than 4.5 V, owing to their structural degradation and labile surface reactivity. Surface-coating with solid electrolytes has been recognized as an effective method to mitigate the performance failure of NCM811 at high voltage. Herein, the nano-sized Li_(6.4)La_(3)Ta_(0.6)Zr_(1.4)O_(12) (LLZTO) is uniformly coated on the surface of single-crystal NCM811 particles, accompanied with the long-range Ta^(5+) diffusion into the transition metal layer of NCM811 lattice. It is revealed that the LLZTO coating can not only inhibit the surface reactions of NCM811 with liquid electrolytes but also play an important role in suppressing the bulk microcracking within the NCM811 particles. The incorporation of Ta^(5+) ion expands the lattice spacing and thereby improves the homogeneity of the Li^(+) diffusion in the single-crystal NCM811, which alleviates the mechanical strain and intragranular cracks caused by nonuniform phases-transformation at high charging voltage. The synergy of surface protection and structural stabilization realized by LLZTO coating enables the NCM811-based lithium batteries to achieve a remarkable electrochemical performance. Typically, LLZTO coated NCM811 delivers a high reversible specific capacity of 202.1 mAh⋅g^(−1) with an excellent capacity retention as high as 70% over 1000 cycles upon charging to 4.5 V at 1 C.展开更多
The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span va...The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.展开更多
To meet the escalating electricity demand and rising fuel costs,along with notable losses in power transmission,exploring alternative solutions is imperative.Gas turbines demonstrate high efficiency under ideal Intern...To meet the escalating electricity demand and rising fuel costs,along with notable losses in power transmission,exploring alternative solutions is imperative.Gas turbines demonstrate high efficiency under ideal International Organization for Standardization(ISO)conditions but face challenges during summer when ambient temperatures reach 40℃.To enhance performance,the proposal suggests cooling inlet air by 15℃using a vapor absorption chiller(VAC),utilizing residual exhaust gases from a combined cycle power plant(CCPP)to maximize power output.Additionally,diverting a portion of exhaust gases to drive an organic Rankine cycle(ORC)for supplementary power generation offers added efficiency.This integrated approach not only boosts power output but alsominimizes environmental impact by repurposing exhaust gases for additional operations.This study presents a detailed energy and economic analysis of a modified combine cycle power plant,in Kotri,Pakistan.R600A is used as organic fuel for the ORC while LiBr-H2O solution is used for the VAC.Two performance parameters,efficiency and energy utilization factor,Four energetic parameters,Work output of ORC,modified CCPP,original CCPP and cooling rate,and one economics parameter,payback period were examined under varying ambient conditions and mass fraction of exhaust gases from outlet of a gas turbine(ψ).A parametric investigation was conducted within the temperature range of 18℃to 50℃,relative humidity between 70%and 90%,and theψranging from 0 to 0.3.The findings reveal that under elevated ambient conditions(40℃,90%humidity)withψat 0,the Energy Utilization Factor(EUF)exceeds 60%.However,the ORC exhibits a low work output of 100KWalongside a high cooling load of 29,000 kW.Conversely,the modified system demonstrates an augmented work output of approximately 81,850 KWcompared to the original system’s 78,500KW.Furthermore,the integration of this systemproves advantageous across all metrics.Additionally,the payback period of the system is contingent on ambient conditions,with lower conditions correlating to shorter payback periods and vice versa.展开更多
Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding m...Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding microstructural evolution of contaminated loess subjected to dry-wet cycles is essential to elucidate the soil degradation mechanism.Therefore,direct shear and consolidation tests were performed to investigate the variations in mechanical properties of compacted loess contaminated with acetic acid,sodium hydroxide,and sodium sulfate during dry-wet cycles.The mechanical response mechanisms were investigated using zeta potential,mineral chemical composition,and scanning electron microscopy(SEM)tests.The results indicate that the mechanical deterioration of sodium hydroxidecontaminated loess during dry-wet cycles decreases with increasing contaminant concentration,which is mainly attributed to the thickening of the electrical double layer(EDL)by Nat and the precipitation of calcite,as well as the formation of colloidal flocs induced by OH,thus inhibiting the development of large pores during the dry-wet process.In contrast,the attenuation of mechanical properties of both acetic acid-and sodium sulfate-contaminated loess becomes more severe with increasing contaminant concentration,with the latter being more particularly significant.This is primarily due to the reduction of the EDL thickness and the erosion of cement in the acidic environment,which facilitates the connectivity of pores during dry-wet cycles.Furthermore,the salt expansion generated by the drying process of saline loess further intensifies the structural disturbance.Consequently,the mechanical performance of compacted loess is sensitive to both pollutant type and concentration,exhibiting different response patterns in the dry-wet cycling condition.展开更多
Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucid...Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucidate the biological functions of NCAPD2 in LUAD and unravel the underlying mechanistic pathways.Methods:Utilizing bioinformatics methodologies,we explored the differential expression of NCAPD2 between normal and tumor samples,along with its correlations with clinical-pathological characteristics,survival prognosis,and immune infiltration.Results:In the TCGA-LUAD dataset,tumor samples demonstrated significantly elevated levels of NCAPD2 expression compared to normal samples(p<0.001).Clinically,higher NCAPD2 expression was notably associated with advanced T,N,and M stages,pathologic stage,gender,smoking status,and diminished overall survival(OS).Moreover,differentially expressed genes(DEGs)associated with NCAPD2 were predominantly enriched in pathways related to cell division.Immune infiltration analysis revealed that NCAPD2 expression levels were linked to the infiltration of memory B cells,naïve CD4+T cells,activated memory CD4+T cells,and M1 macrophages.In vitro experiments demonstrated that silencing NCAPD2 suppressed LUAD cell proliferation,migration,invasion,epithelial-mesenchymal transition(EMT),and cell cycle progression.Conclusions:In summary,NCAPD2 may represent a promising prognostic biomarker and novel therapeutic target for LUAD.展开更多
This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0....This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles.展开更多
The history of our solar system has been greatly influenced by the fact that there is a large gas giant planet, Jupiter that has a nearly circular orbit. This has allowed relics of the early solar system formation to ...The history of our solar system has been greatly influenced by the fact that there is a large gas giant planet, Jupiter that has a nearly circular orbit. This has allowed relics of the early solar system formation to still be observable today. Since Jupiter orbits the Sun with a period of approximately 12 years, it has always been thought that this could be connected to the nearly 11-year periodic peak in the number of sunspots observed. In this paper, the Sun and planets are considered to be moving about a center of mass point as the different planets orbit the Sun. This is the action of gravity that holds the solar system together. The center of mass for the Jupiter-Sun system actually lies outside the Sun. The four gas giant planets dominate such effects and the four gas giant Jovian planets can be projected together to determine an effective distance from the Sun’s center. Taken together these effects do seem to function as a sunspot forcing factor with a periodicity very close to 11 years. These predictions are made without consideration of any details of what is happening in the interior of the Sun. From these estimates, sunspot cycle 25 will be expected to peak in about September-October of 2025. Sunspot cycle 26 should peak in the year March of 2037.展开更多
基金jointly supported by the National Natural Science Foundation of China [grant numbers U2242205 and 41830969]the S&T Development Fund of CAMS [grant number 2023KJ036]the Basic Scientific Research and Operation Foundation of CAMS [grant number 2023Z018]。
文摘The dominant annual cycle of sea surface temperature(SST)in the tropical Pacific exhibits an antisymmetric mode,which explains 83.4%total variance,and serves as a background of El Niño-Southern Oscillation(ENSO).However,there is no consensus yet on its anomalous impacts on the phase and amplitude of ENSO.Based on data during 1982-2022,results show that anomalies of the antisymmetric mode can affect the evolution of ENSO on the interannual scale via Bjerknes feedback,in which the positive(negative)phase of the antisymmetric mode can strengthen El Niño(La Niña)in boreal winter via an earlier(delayed)seasonal cycle transition and larger(smaller)annual mean.The magnitude of the SST anomalies in the equatorial eastern Pacific can reach more than±0.3◦C,regulated by the changes in the antisymmetric mode based on random sensitivity analysis.Results reveal the spatial pattern of the annual cycle associated with the seasonal phase-locking of ENSO evolution and provide new insight into the impact of the annual cycle of background SST on ENSO,which possibly carries important implications for forecasting ENSO.
基金supported by the National Natural Science Foundation of China(42388101)the CAS Youth Interdisciplinary Team(JCTD-2021-05)。
文摘Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.
基金This work was supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010300).
文摘A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.
文摘BACKGROUND:This study aimed to review bicycle-related injuries during the COVID-19 pandemic to assist with reinforcement or implementation of new policies for injury prevention.METHODS:This is a retrospective descriptive analysis of injuries sustained during cycling for patients 18 years old and above who presented to Singapore General Hospital from January to June 2021.Medical records were reviewed and consolidated.Descriptive analyses were used to summarize patient characteristics,and differences in characteristics subgrouped by triage acuity and discharge status were analyzed.RESULTS:The study included 272 patients with a mean age of 43 years and a male predominance(71.7%).Most presented without referrals(88.2%)and were not conveyed by ambulances(70.6%).Based on acuity category,there were 24(8.8%)Priority 1(P1)patients with 7 trauma activations,174(64.0%)and 74(27.2%)P2 and P3 patients respectively.The most common injuries were fractures(34.2%),followed by superficial abrasion/contusion(29.4%)and laceration/wound(19.1%).Thirteen(4.8%)patients experienced head injury and 85 patients(31.3%)were documented to be wearing a helmet.The majority occurred on the roads as traffic accidents(32.7%).Forty-two patients(15.4%)were admitted with a mean length of stay of 4.1 d and 17(6.3%)undergone surgical procedures.Out of 214(78.7%)discharged patients,no re-attendances or mortality were observed.In the subgroup analysis,higher acuity patients were generally older,with higher proportions of head injuries leading to admission.CONCLUSION:Our study highlights significant morbidities in bicycle-related injuries.There is also a high proportion of fractures in the young healthy male population.Injury prevention is paramount and we propose emphasizing helmet use and road user safety.
基金The authors gratefully acknowledge the financial support of National NaturalScience Foundation of China(Grant No.41972276)Natural Science Foundation of Fujian Province,China(Grant No.2020J06013)"Foal Eagle Program"Youth Top-notch Talent Project of Fujian Province,China(Grant No.00387088).
文摘Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7% after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 m m under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions.
基金National Natural Science Foundation of China,Grant/Award Numbers:51972178,52202061Hunan Provincial Nature Science Foundation,Grant/Award Number:2022JJ40068。
文摘Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications.
文摘Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies.
基金This work was supported of National Natural Science Foundation of China Fund(No.52306033)State Key Laboratory of Engines Fund(No.SKLE-K2022-07)the Jiangxi Provincial Postgraduate Innovation Special Fund(No.YC2022-s513).
文摘The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.
基金This research was funded by the National Key Research and Development Program of China(2023YFD2301505).
文摘Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities.
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
基金supported by the National Key R&D Program of China (Grant No.2023YFB2503900)the National Natural Science Foundation of China (Grant No.52372203)Youth Innovation Team of Universities in Shandong Province (Grant No.2023KJ359)。
文摘The pursuit of high-energy cathode materials has been focused on raising the charging cutoff voltage of nickel (Ni)-rich layered oxide cathode such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O2 (NCM811). However, the NCM811 suffers from rapid capacity fading upon cycling at cutoff voltage higher than 4.5 V, owing to their structural degradation and labile surface reactivity. Surface-coating with solid electrolytes has been recognized as an effective method to mitigate the performance failure of NCM811 at high voltage. Herein, the nano-sized Li_(6.4)La_(3)Ta_(0.6)Zr_(1.4)O_(12) (LLZTO) is uniformly coated on the surface of single-crystal NCM811 particles, accompanied with the long-range Ta^(5+) diffusion into the transition metal layer of NCM811 lattice. It is revealed that the LLZTO coating can not only inhibit the surface reactions of NCM811 with liquid electrolytes but also play an important role in suppressing the bulk microcracking within the NCM811 particles. The incorporation of Ta^(5+) ion expands the lattice spacing and thereby improves the homogeneity of the Li^(+) diffusion in the single-crystal NCM811, which alleviates the mechanical strain and intragranular cracks caused by nonuniform phases-transformation at high charging voltage. The synergy of surface protection and structural stabilization realized by LLZTO coating enables the NCM811-based lithium batteries to achieve a remarkable electrochemical performance. Typically, LLZTO coated NCM811 delivers a high reversible specific capacity of 202.1 mAh⋅g^(−1) with an excellent capacity retention as high as 70% over 1000 cycles upon charging to 4.5 V at 1 C.
文摘The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.
文摘To meet the escalating electricity demand and rising fuel costs,along with notable losses in power transmission,exploring alternative solutions is imperative.Gas turbines demonstrate high efficiency under ideal International Organization for Standardization(ISO)conditions but face challenges during summer when ambient temperatures reach 40℃.To enhance performance,the proposal suggests cooling inlet air by 15℃using a vapor absorption chiller(VAC),utilizing residual exhaust gases from a combined cycle power plant(CCPP)to maximize power output.Additionally,diverting a portion of exhaust gases to drive an organic Rankine cycle(ORC)for supplementary power generation offers added efficiency.This integrated approach not only boosts power output but alsominimizes environmental impact by repurposing exhaust gases for additional operations.This study presents a detailed energy and economic analysis of a modified combine cycle power plant,in Kotri,Pakistan.R600A is used as organic fuel for the ORC while LiBr-H2O solution is used for the VAC.Two performance parameters,efficiency and energy utilization factor,Four energetic parameters,Work output of ORC,modified CCPP,original CCPP and cooling rate,and one economics parameter,payback period were examined under varying ambient conditions and mass fraction of exhaust gases from outlet of a gas turbine(ψ).A parametric investigation was conducted within the temperature range of 18℃to 50℃,relative humidity between 70%and 90%,and theψranging from 0 to 0.3.The findings reveal that under elevated ambient conditions(40℃,90%humidity)withψat 0,the Energy Utilization Factor(EUF)exceeds 60%.However,the ORC exhibits a low work output of 100KWalongside a high cooling load of 29,000 kW.Conversely,the modified system demonstrates an augmented work output of approximately 81,850 KWcompared to the original system’s 78,500KW.Furthermore,the integration of this systemproves advantageous across all metrics.Additionally,the payback period of the system is contingent on ambient conditions,with lower conditions correlating to shorter payback periods and vice versa.
基金supported by the Second Tibet Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0905)the Key Program of the National Natural Science Foundation of China(Grant No.41931285)the Key Research and Development Program of Shaanxi Province(Grant No.2019ZDLSF05-07).
文摘Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding microstructural evolution of contaminated loess subjected to dry-wet cycles is essential to elucidate the soil degradation mechanism.Therefore,direct shear and consolidation tests were performed to investigate the variations in mechanical properties of compacted loess contaminated with acetic acid,sodium hydroxide,and sodium sulfate during dry-wet cycles.The mechanical response mechanisms were investigated using zeta potential,mineral chemical composition,and scanning electron microscopy(SEM)tests.The results indicate that the mechanical deterioration of sodium hydroxidecontaminated loess during dry-wet cycles decreases with increasing contaminant concentration,which is mainly attributed to the thickening of the electrical double layer(EDL)by Nat and the precipitation of calcite,as well as the formation of colloidal flocs induced by OH,thus inhibiting the development of large pores during the dry-wet process.In contrast,the attenuation of mechanical properties of both acetic acid-and sodium sulfate-contaminated loess becomes more severe with increasing contaminant concentration,with the latter being more particularly significant.This is primarily due to the reduction of the EDL thickness and the erosion of cement in the acidic environment,which facilitates the connectivity of pores during dry-wet cycles.Furthermore,the salt expansion generated by the drying process of saline loess further intensifies the structural disturbance.Consequently,the mechanical performance of compacted loess is sensitive to both pollutant type and concentration,exhibiting different response patterns in the dry-wet cycling condition.
基金supported by the National Natural Science Foundation of China(82173828 and 81874314)the Research Project of the Shanghai Municipal Health Commission(20234Y0082).
文摘Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucidate the biological functions of NCAPD2 in LUAD and unravel the underlying mechanistic pathways.Methods:Utilizing bioinformatics methodologies,we explored the differential expression of NCAPD2 between normal and tumor samples,along with its correlations with clinical-pathological characteristics,survival prognosis,and immune infiltration.Results:In the TCGA-LUAD dataset,tumor samples demonstrated significantly elevated levels of NCAPD2 expression compared to normal samples(p<0.001).Clinically,higher NCAPD2 expression was notably associated with advanced T,N,and M stages,pathologic stage,gender,smoking status,and diminished overall survival(OS).Moreover,differentially expressed genes(DEGs)associated with NCAPD2 were predominantly enriched in pathways related to cell division.Immune infiltration analysis revealed that NCAPD2 expression levels were linked to the infiltration of memory B cells,naïve CD4+T cells,activated memory CD4+T cells,and M1 macrophages.In vitro experiments demonstrated that silencing NCAPD2 suppressed LUAD cell proliferation,migration,invasion,epithelial-mesenchymal transition(EMT),and cell cycle progression.Conclusions:In summary,NCAPD2 may represent a promising prognostic biomarker and novel therapeutic target for LUAD.
基金supported by the Natural Science Foundation of Ningxia(2022AAC05044)the National Natural Science Foundation of China(12161069)。
文摘This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles.
文摘The history of our solar system has been greatly influenced by the fact that there is a large gas giant planet, Jupiter that has a nearly circular orbit. This has allowed relics of the early solar system formation to still be observable today. Since Jupiter orbits the Sun with a period of approximately 12 years, it has always been thought that this could be connected to the nearly 11-year periodic peak in the number of sunspots observed. In this paper, the Sun and planets are considered to be moving about a center of mass point as the different planets orbit the Sun. This is the action of gravity that holds the solar system together. The center of mass for the Jupiter-Sun system actually lies outside the Sun. The four gas giant planets dominate such effects and the four gas giant Jovian planets can be projected together to determine an effective distance from the Sun’s center. Taken together these effects do seem to function as a sunspot forcing factor with a periodicity very close to 11 years. These predictions are made without consideration of any details of what is happening in the interior of the Sun. From these estimates, sunspot cycle 25 will be expected to peak in about September-October of 2025. Sunspot cycle 26 should peak in the year March of 2037.