An inclusion complex of cyclic bis(zinc porphyrin) 1 with 5,15-dipyridylporphyrin derivative 3 has been designed and constructed. The complex formation is induced by Zn-N coordination, and is robust (Kassoc ~ 106 L/mo...An inclusion complex of cyclic bis(zinc porphyrin) 1 with 5,15-dipyridylporphyrin derivative 3 has been designed and constructed. The complex formation is induced by Zn-N coordination, and is robust (Kassoc ~ 106 L/mol) due to the presence of the cage effect of cyclic bis(zinc porphyrin). The cage-like complex as an entity is stable enough, and also convenient to achieve relative movement between the bis(zinc porphyrin) host and the dipyridylporphyrin guest connected by Zn-N coordination. The characteristics of these assemblies have been demonstrated by 1 H NMR, UV-vis, and fluorescence spectra. The results show its potential applications as a molecular gyroscope in molecular machines.展开更多
基金Supported by the 973 Program (Grant No. 2006CB932900)National Natural Science Foundation of China (Grant Nos. 20802038 and 20721062)Tianjin Natural Science Foundation (Grant No. 07QTPTJC29700).
文摘An inclusion complex of cyclic bis(zinc porphyrin) 1 with 5,15-dipyridylporphyrin derivative 3 has been designed and constructed. The complex formation is induced by Zn-N coordination, and is robust (Kassoc ~ 106 L/mol) due to the presence of the cage effect of cyclic bis(zinc porphyrin). The cage-like complex as an entity is stable enough, and also convenient to achieve relative movement between the bis(zinc porphyrin) host and the dipyridylporphyrin guest connected by Zn-N coordination. The characteristics of these assemblies have been demonstrated by 1 H NMR, UV-vis, and fluorescence spectra. The results show its potential applications as a molecular gyroscope in molecular machines.