For any prime p, all finite noncyclic p-groups which contain a self-centralizing cyclic normal subgroup are determined by using cohomological techniques. Some applications are given, including a character theoretic de...For any prime p, all finite noncyclic p-groups which contain a self-centralizing cyclic normal subgroup are determined by using cohomological techniques. Some applications are given, including a character theoretic description for such groups.展开更多
Let A be a subgroup of a group G and X be a nonempty subset of G. A is said to be X-semipermutable in G if A has a supplement T in G such that A is X-permutable with every subgroup of T. In this paper, we investigate ...Let A be a subgroup of a group G and X be a nonempty subset of G. A is said to be X-semipermutable in G if A has a supplement T in G such that A is X-permutable with every subgroup of T. In this paper, we investigate further the influence of X-semipermutability of some subgroups on the structure of finite groups. Some new criteria for a group G to be supersoluble or p-nilpotent are obtained.展开更多
In this paper, groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 ale classified. It turns out that if p 〉 2, n≥ 5, then the classification of groups of order p^n in w...In this paper, groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 ale classified. It turns out that if p 〉 2, n≥ 5, then the classification of groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 and the classification of groups of order p^n with a cyclic subgroup of index p2 are the same.展开更多
Let p be an odd prime,and let k be a nonzero nature number.Suppose that nonabelian group G is a central extension as follows1→G’→G→Z_(pK)×…×Z_(pK),where G’≌Zpk,andζG/G’is a,direct factor of G/G’.Th...Let p be an odd prime,and let k be a nonzero nature number.Suppose that nonabelian group G is a central extension as follows1→G’→G→Z_(pK)×…×Z_(pK),where G’≌Zpk,andζG/G’is a,direct factor of G/G’.Then G is a central product of an extraspecial pkgroup E andζG.Let|E|=p(2n+1)k and|ζG|=p(m+1)k.Suppose that the exponents of E andζG are pk+l and pk+r,respectively,where 0≤l,r≤k.Let AutG’G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G’,let AutG/ζG,ζG G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the centerζG and let AutG/ζG,ζG/G’G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially onζG/G’.Then(ⅰ)The group extension 1→Aut G’→Aut G→Aut G’→1 is split.(ⅱ)AutG’G/AutG/ζG,ζG G≌G1×G2,where Sp(2n-2,Zpk)■H≤G1≤Sp(2n,Zpk),H is an extraspecial pk-group of order p(2n-1)k and(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)≤G2≤GL(m,Zpk)■Zpk(m).In particular,G1=Sp(2n-2,Zpk)■H if and only if l=k and r=0;G1=Sp(2n,Zpx)if and only if l≤r;G2=(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)if and only if r=k;G2=GL(m,Zpk)■Zpk((m))if and only if r=0.(ⅲ)AutG’G/Aut G/ζG,ζG/G’G≌G1×G3,where G1 is defined in(ⅱ);GL(ml,Zpk)■Zpk(m-1)≤G3≤GL(n,Zpk).In particular,G3=GL(m-1,Zpk)■Zpk(m-1)if and only if r=k;G3=GL(m,Zpk)if and only if r=0.(ⅳ)AntG/ζG,ζG/G’G≌AutG/ζG,ζG/G’G■Zpk(m),If m=0,then AntG/ζG,ζG/G’G=Inn G≌Zpk(2n);If m>0,then AntG/ζG,ζG/G’G≌Zpk(2nm)×Zpk-r(2n),and AutG/ζG,ζG G/Inn G≌Zpk((2n(m-1))×Zpk-r(2n).展开更多
In this paper the classification is given for finite groups in which the normalizer of every non-normal cyclic subgroup of order divided by the minimal prime of |G| is a maximal subgroup.
基金Supported by the NSF of China(11171194)by the NSF of Shanxi Province(2012011001-1)
文摘For any prime p, all finite noncyclic p-groups which contain a self-centralizing cyclic normal subgroup are determined by using cohomological techniques. Some applications are given, including a character theoretic description for such groups.
基金supported by National Natural Science Foundation of China (Grant Nos. 10771172, 10771180)
文摘Let A be a subgroup of a group G and X be a nonempty subset of G. A is said to be X-semipermutable in G if A has a supplement T in G such that A is X-permutable with every subgroup of T. In this paper, we investigate further the influence of X-semipermutability of some subgroups on the structure of finite groups. Some new criteria for a group G to be supersoluble or p-nilpotent are obtained.
基金supported by the National Natural Science Foundation of China(No.10671114)the ShanxiProvincial Natural Science Foundation of China(No.2008012001)the Returned Abroad-StudentFund of Shanxi Province(No.[2007]13-56)
文摘In this paper, groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 ale classified. It turns out that if p 〉 2, n≥ 5, then the classification of groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 and the classification of groups of order p^n with a cyclic subgroup of index p2 are the same.
基金Supported by NSFC(Grant Nos.11601121,11771129)Natural Science Foundation of He’nan Province of China(Grant No.162300410066)。
文摘Let p be an odd prime,and let k be a nonzero nature number.Suppose that nonabelian group G is a central extension as follows1→G’→G→Z_(pK)×…×Z_(pK),where G’≌Zpk,andζG/G’is a,direct factor of G/G’.Then G is a central product of an extraspecial pkgroup E andζG.Let|E|=p(2n+1)k and|ζG|=p(m+1)k.Suppose that the exponents of E andζG are pk+l and pk+r,respectively,where 0≤l,r≤k.Let AutG’G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G’,let AutG/ζG,ζG G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the centerζG and let AutG/ζG,ζG/G’G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially onζG/G’.Then(ⅰ)The group extension 1→Aut G’→Aut G→Aut G’→1 is split.(ⅱ)AutG’G/AutG/ζG,ζG G≌G1×G2,where Sp(2n-2,Zpk)■H≤G1≤Sp(2n,Zpk),H is an extraspecial pk-group of order p(2n-1)k and(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)≤G2≤GL(m,Zpk)■Zpk(m).In particular,G1=Sp(2n-2,Zpk)■H if and only if l=k and r=0;G1=Sp(2n,Zpx)if and only if l≤r;G2=(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)if and only if r=k;G2=GL(m,Zpk)■Zpk((m))if and only if r=0.(ⅲ)AutG’G/Aut G/ζG,ζG/G’G≌G1×G3,where G1 is defined in(ⅱ);GL(ml,Zpk)■Zpk(m-1)≤G3≤GL(n,Zpk).In particular,G3=GL(m-1,Zpk)■Zpk(m-1)if and only if r=k;G3=GL(m,Zpk)if and only if r=0.(ⅳ)AntG/ζG,ζG/G’G≌AutG/ζG,ζG/G’G■Zpk(m),If m=0,then AntG/ζG,ζG/G’G=Inn G≌Zpk(2n);If m>0,then AntG/ζG,ζG/G’G≌Zpk(2nm)×Zpk-r(2n),and AutG/ζG,ζG G/Inn G≌Zpk((2n(m-1))×Zpk-r(2n).
基金Supported by the Doctoral Scientific Research Foundation of Shanxi University of Finance and Economics(Grant No.Z18207)the National Natural Science Foundation of China(Grant Nos.11771271,11801334)the China Scholarship Council Foundation(Grant No.201908140049)。
文摘In this paper the classification is given for finite groups in which the normalizer of every non-normal cyclic subgroup of order divided by the minimal prime of |G| is a maximal subgroup.