Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper st...Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper stress ranged from 0. 20f t to 0.65f t. Three constant lateral pressures were 0.1f c, 0.2f c and 0.3f c respec tively. Based on the results, the th ree-stage evolution rule of the fatigue stiffness, maximum(minimum) longitudina l strain and damage were analyzed, and a unified S-N curve to calculate fati gue strength factors was worked out. The results show that the fatigue strength and fa tigue life under triaxial constant-amplitude tension-compression cyclic loadin g are smaller than those under uniaxial fatigue condition. Moreover, the secondary strain creep rate is related to the fatigue life, a formula for describing thei r relation was derived. The investigation of this paper can provide information for the fatigue design of concrete structures.展开更多
An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the ...An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the upper level ranges between 0. 20f and 0. 55f., while the constant lateral pressure is 0. 3 f . The specimen failure mode, the three-stage evolution rule of the longitudinal strains and the damage evolution law under cyclic loading were analyzed. Furthermore, Miner's rule is proved not to be applicable to the cyclic loading conditions, hereby, a nonlinear cumulative damage model was established. Based on the model the remaining fatigue life was evaluated. The comparison whh the experiment resuhs shaws that the model is of better precision and applicability.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.50078010)
文摘Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper stress ranged from 0. 20f t to 0.65f t. Three constant lateral pressures were 0.1f c, 0.2f c and 0.3f c respec tively. Based on the results, the th ree-stage evolution rule of the fatigue stiffness, maximum(minimum) longitudina l strain and damage were analyzed, and a unified S-N curve to calculate fati gue strength factors was worked out. The results show that the fatigue strength and fa tigue life under triaxial constant-amplitude tension-compression cyclic loadin g are smaller than those under uniaxial fatigue condition. Moreover, the secondary strain creep rate is related to the fatigue life, a formula for describing thei r relation was derived. The investigation of this paper can provide information for the fatigue design of concrete structures.
文摘An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the upper level ranges between 0. 20f and 0. 55f., while the constant lateral pressure is 0. 3 f . The specimen failure mode, the three-stage evolution rule of the longitudinal strains and the damage evolution law under cyclic loading were analyzed. Furthermore, Miner's rule is proved not to be applicable to the cyclic loading conditions, hereby, a nonlinear cumulative damage model was established. Based on the model the remaining fatigue life was evaluated. The comparison whh the experiment resuhs shaws that the model is of better precision and applicability.