期刊文献+
共找到1,642篇文章
< 1 2 83 >
每页显示 20 50 100
Seismic performance evaluation of an infilled rocking wall frame structure through quasi-static cyclic testing 被引量:8
1
作者 Pan Peng Wu Shoujun +1 位作者 Wang Haishen Nie Xin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第2期371-383,共13页
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous ... Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous components offer alternatives that may avoid such failures.A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics.Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used.However,a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported.In this study,a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing.Critical joints were designed and verified.Numerical models were established and calibrated to estimate frame shear forces.The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms.Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall.Drift distribution becomes more uniform with height.Concrete cracks and damage occurs in desired areas.The infilled rocking wall frame offers a promising approach to achieving seismic resilience. 展开更多
关键词 infilled rocking wall frame seismic performance displacement distribution quasi-static cyclic test
下载PDF
Liquefaction proneness of stratified sand-silt layers based on cyclic triaxial tests 被引量:2
2
作者 Arpit Jain Satyendra Mittal Sanjay Kumar Shukla 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1826-1845,共20页
Most studies on liquefaction have addressed homogeneous soil strata using sand or sand with fine content without considering soil stratification.In this study,cyclic triaxial tests were conducted on the stratified san... Most studies on liquefaction have addressed homogeneous soil strata using sand or sand with fine content without considering soil stratification.In this study,cyclic triaxial tests were conducted on the stratified sand specimens embedded with the silt layers to investigate the liquefaction failures and void-redistribution at confining stress of 100 kPa under stress-controlled mode.The loosening of underlying sand mass and hindrance to pore-water flow caused localized bulging at the sand-silt interface.It is observed that at a silt thickness of 0.2H(H is the height of the specimen),nearly 187 load cycles were required to attain liquefaction,which was the highest among all the silt thicknesses with a single silt layer.Therefore,0.2H is assumed as the optimum silt thickness(t_(opt)).The silt was placed at the top,middle and bottom of the specimen to understand the effect of silt layer location.Due to the increase in depth of the silt layer from the top position(capped soil state)to the bottom,the cycles to reach liquefaction(N_(cyc,L))increased 2.18 times.Also,when the number of silt layers increased from single to triple,there was an increase of about 880%in N_(cyc,L).The micro-characterization analysis of the soil specimens indicated silty materials transported in upper sections of the specimen due to the dissipated pore pressure.The main parameters,including thickness(t),location(z),cyclic stress ratio(CSR),number of silt layers(n)and modified relative density(D_(r,m)),performed significantly in governing the lique-faction resistance.For this,a multilinear regression model is developed based on critical parameters for prediction of N_(cyc,L).Furthermore,the developed constitutive model has been validated using the data from the present study and earlier findings. 展开更多
关键词 cyclic triaxial tests Soil stratification Soil liquefaction Regression model
下载PDF
Assessment of cyclic deformation and critical stress amplitude of jointed rocks via cyclic triaxial testing
3
作者 Waranga Habaraduwa Peellage Behzad Fatahi Haleh Rasekh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1370-1390,共21页
Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric... Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric stress amplitudes.The samples were subjected to 10,000 loading-unloading cycles with a frequency of 8 Hz.At each level of confining pressure,the applied cyclic deviatoric stress amplitude was increased incrementally until excessive deformation of the jointed rock specimen was observed.Analysis of the test results indicated that there existed a critical cyclic deviatoric stress amplitude(i.e.critical dynamic deviatoric stress)beyond which the jointed rock specimens yielded.The measured critical dynamic deviatoric stress was less than the corresponding static deviatoric stress.At cyclic deviatoric stress amplitudes less than the critical dynamic deviatoric stress,minor cumulative residual axial strains were observed,resulting in hysteretic damping.However,for cyclic deviatoric stresses beyond the critical dynamic deviatoric stress,the plastic strains increased promptly,and the resilient moduli degraded rapidly during the initial loading cycles.Cyclic triaxial test results showed that at higher confining pressures,the ultimate residual axial strain attained by the jointed rock specimen decreased,the steadystate dissipated energy density and steady-state damping ratio per load cycle decreased,while steadystate resilient moduli increased. 展开更多
关键词 cyclic triaxial test Jointed rock Joint surface Confining pressure cyclic deviatoric stress amplitude FAILURE Residual deformation Dissipated energy
下载PDF
Cyclic shear behavior of en-echelon joints under constant normal stiffness conditions
4
作者 Bin Wang Yujing Jiang +3 位作者 Qiangyong Zhang Hongbin Chen Richeng Liu Yuanchao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3419-3436,共18页
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit... To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles. 展开更多
关键词 En-echelon joint cyclic shear tests Shear stress Normal displacement Constant normal stiffness(CNS)
下载PDF
Experimental investigation on shear strength deterioration at the interface between different rock types under cyclic loading
5
作者 Qiong Wu Zhiqi Liu +6 位作者 Huiming Tang Liangqing Wang Xiaoxue Huo Zhen Cui Shiyu Li Bo Zhang Zhiwei Lin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3063-3079,共17页
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake... The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate. 展开更多
关键词 Discontinuities with different joint wall material(DDJM) Discontinuities with identical joint wall material(DIJM) cyclic shear test Shear strength deterioration Joint surface morphology Shear displacement amplitude Shear rate Normal stress
下载PDF
Conceptual study of X-braced frames with different steel grades using cyclic half-scale tests
6
作者 Parviz Ebadi Saeid Sabouri-Ghomi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第3期313-329,共17页
In this paper, an experimental and analytical study of two half-scale steel X-braced flames with equal nominal shear strength under cyclic loading is described. In these tests, all members except the braces are simila... In this paper, an experimental and analytical study of two half-scale steel X-braced flames with equal nominal shear strength under cyclic loading is described. In these tests, all members except the braces are similar. The braces are made of various steel grades to monitor the effects of seismic excitation. Internal stiffeners are employed to limit the local buckling and increase the fracture life of the steel bracing. A heavy central core is introduced at the intersection of the braces to decrease their effective length. Recent seismic specifications are considered in the design of the X-braced frame members to verify their efficiency. The failure modes of the X-braced frames are also illustrated. It is observed that the energy dissipation capacity, ultimate load capacity and ductility of the system increase considerably by using lower grade steel and proposed detailing. Analytical modeling of the specimens using nonlinear finite element software supports the experimental findings. 展开更多
关键词 BRACING low grade steel EXPERIMENTATION cyclic test seismic behavior analytical modeling DUCTILITY
下载PDF
Influence of volume compression on the unloading deformation behavior of red sandstone under damage-controlled cyclic triaxial loading 被引量:2
7
作者 Huaizhong Liu Jianliang Pei +3 位作者 Jianfeng Liu Mingli Xiao Li Zhuo Hongqiang Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1200-1212,共13页
A reasonable evaluation of unloading deformation characteristics is of great significance for the effective analysis of deformation and stability of surrounding rocks after underground excavation.In this study,the dam... A reasonable evaluation of unloading deformation characteristics is of great significance for the effective analysis of deformation and stability of surrounding rocks after underground excavation.In this study,the damage-controlled cyclic triaxial loading tests were conducted to investigate the pore compaction mechanism and its influences on the unloading deformation behavior of red sandstone,including Young’s modulus,Poisson’s ratio,volumetric strain,and irreversible strain.The experimental results show that the increases of volumetric and irreversible strains of rocks can be attributed to the compaction mechanism,which almost dominates the entire pre-peak deformation process.The unloading deformation consists of the reversible linear and nonlinear strains,and the irreversible strain under the influence of the porous grain structure.The pre-peak Young’s modulus tends to increase and then decrease due to the influence of the unloading irreversible strain.However,it hardly changes with the increasing volumetric strain compaction under the influence of reversible nonlinear strain.Instead,the initial unloading tangent modulus is highly related to the volumetric strain,and clearly reflects the compaction state of red sandstone.Furthermore,both the reversible nonlinear and irreversible unloading deformations are independent of confining pressure.This study is beneficial for the theoretical modeling and prediction of cyclic unloading deformation behavior of red sandstone. 展开更多
关键词 cyclic loading tests Compaction mechanism Volumetric strain Unloading tangent modulus Red sandstone
下载PDF
Cyclic behavior test of a new double-arch steel gate
8
作者 LUO Yao-zhi ZHU Shi-zhe CHEN Xi 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第11期1731-1739,共9页
A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designe... A new double-arch structure for the gate used as tidal barrage and sluice was adopted in Caoe River Dam in China. It was a spatial structure made up of the right arch, the invert arch, the chord, etc., and was designed to bear bilateral loads. To research the cyclic behavior of the new double-arch structure, a scale-model cyclic test was conducted. First, the test setup and test method were presented in detail, and according to the test results, the cyclic behavior and failure characteristics of this structure were discussed. Then by analyzing the test cyclic envelope curve, it was found the curve was divided into three stages: the elastic stage, the local plastic stage and the failure stage at the local yield point and structural yield point. The gate model has local yield strength and structural yield strength, with both their values being bigger than that of the designing load. Therefore, the gate is safe enough for the projects. At last, dynamic property of the gate was analyzed considering additional mass of the water. It was found that the tidal bore shock would not cause resonance vibration of the gate. 展开更多
关键词 Double-arch steel gate cyclic behavior test cyclic envelope curve Dynamic property
下载PDF
Cyclic Shear Tests on Key Connection Joints of Modularized Constructions
9
作者 Deshen Chen Xiaofei Jin +3 位作者 Huajie Wang Hongliang Qian Deci Chang Feng Fan 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第3期13-20,共8页
Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This... Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This paper presents a new type of assembled connection joint for the high-rise modularized construction. Cyclic shear tests of full-scale joints were carried out, and the key indexes of their seismic performances including the hysteretic performance, ductility, and energy dissipation capacity were analyzed and obtained. The results show that the hysteresis loops of longitudinal and lateral cyclic shear tests were both plump in shapes. The ductility coefficients were 4.54 and 4.98, and the energy dissipation coefficients were 1.83 and 1.43, respectively. The test joint had good ductility and energy dissipation capacity. The positions of yield failure of specimens were mainly concentrated in the connection areas between the column and short beam or end-plate. The research can provide the technical reference for the seismic design and engineering application of related modularized constructions. 展开更多
关键词 modularized construction assembled connection joint cyclic shear test seismic performance
下载PDF
Testing and modeling of cyclically loaded rock anchors 被引量:3
10
作者 Joar Tistel Gustav Grimstad Gudmund Eiksund 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1010-1030,共21页
The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths a... The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond sbuand the slip s1 at τ. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level(τcy/τ), the cyclic load ratio(R= τcy/τcy), and the number of load cycles(N). The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor. 展开更多
关键词 Rock anchor Rock bolt Bond-slip model cyclic loading Empirical model Laboratory testing Bond degradation
下载PDF
Model test of the influence of cyclic water level fluctuations on a landslide 被引量:6
11
作者 HE Chun-can HU Xin-li +3 位作者 XU Chu WU Shuang-shuang ZHANG Han LIU Chang 《Journal of Mountain Science》 SCIE CSCD 2020年第1期191-202,共12页
Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorge... Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well. 展开更多
关键词 Reservoir landslide cyclic water level fluctuations Physical model test Landslide soil loss Adaptive ability
下载PDF
Monotonic and Cyclic Pushover Tests of Wood Beam-Column Connections:Ancient Chinese Tenon Joint vs Typical and Simplified US Connections
12
作者 HUANG Zhenhua 《结构工程师》 2011年第B01期342-349,共8页
Wood beam-column frame is a popular structural system in United States and in ancient China. Chinese wood beam-column frame structures showed better seismic resistance properties than the US ones.The tenon joint is on... Wood beam-column frame is a popular structural system in United States and in ancient China. Chinese wood beam-column frame structures showed better seismic resistance properties than the US ones.The tenon joint is one of the reasons.This study performed monotonic and cyclic pushover tests to understand the behavior of Chinese tenon joints versus the behavior of the commonly used US wood beam-column connections. The test results indicate that the typical US wood beam-column connection is very strong under monotonic loads.The ancient Chinese tenon joint has the best behavior under cyclic loads. 展开更多
关键词 转轮 测试 接缝 转动机件
下载PDF
Field testing of stiffened deep cement mixing piles under lateral cyclic loading 被引量:7
13
作者 Werasak Raongjant Meng Jing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期261-265,共5页
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subject... Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity. 展开更多
关键词 stiffened deep cement mixing pile lateral capacity cyclic lateral loading energy dissipation capacity field testing
下载PDF
轻钢龙骨混凝土复合外挂墙板力学性能试验研究 被引量:1
14
作者 魏晓斌 郭建祥 +2 位作者 汤东婴 孙正华 汪晟 《结构工程师》 2024年第1期99-106,共8页
复合墙板性能关系着结构的安全,在新设计建造的轻钢龙骨复合墙板投入使用前应进行力学性能试验,以评估其安全性能。为研究墙板的受力变形过程及破坏形态,对两片不同的轻钢龙骨混凝土复合外挂墙板分别进行四点弯曲试验和低周反复荷载试... 复合墙板性能关系着结构的安全,在新设计建造的轻钢龙骨复合墙板投入使用前应进行力学性能试验,以评估其安全性能。为研究墙板的受力变形过程及破坏形态,对两片不同的轻钢龙骨混凝土复合外挂墙板分别进行四点弯曲试验和低周反复荷载试验。弯曲试验结果表明,弯曲过程中墙板出现裂缝时的计算等效均布荷载大于建筑风荷载标准值,抗弯性能满足受力要求。墙板经历了弹性阶段、弹塑性变形阶段和屈服破坏阶段,主要通过钢材屈服后的弹塑性变形和材料的破坏来实现耗能,屈服前耗能占总耗能的6.19%,屈服后累计耗能呈现二次抛物线增长,这一结果体现了墙板良好的抗震能力。研究结果可为实际应用提供依据。 展开更多
关键词 墙板 力学性能 抗弯试验 低周反复试验
下载PDF
联肢弯剪型钢板剪力墙抗震性能试验研究
15
作者 郝际平 兰芮 +6 位作者 田炜烽 薛强 李生辉 樊春雷 徐坤 朱邵辉 王洪臣 《建筑钢结构进展》 CSCD 北大核心 2024年第4期10-19,共10页
联肢钢板剪力墙结构是将2片钢板剪力墙通过钢连梁连接形成的抗侧力结构。通过对1榀1/3缩尺的4层联肢弯剪型钢板剪力墙试件进行低周往复加载试验,从滞回曲线、骨架曲线、延性、承载力及刚度退化、耗能能力等方面研究了该结构体系的抗震性... 联肢钢板剪力墙结构是将2片钢板剪力墙通过钢连梁连接形成的抗侧力结构。通过对1榀1/3缩尺的4层联肢弯剪型钢板剪力墙试件进行低周往复加载试验,从滞回曲线、骨架曲线、延性、承载力及刚度退化、耗能能力等方面研究了该结构体系的抗震性能,并且对试件的屈服顺序和变形模式进行了分析。结果表明:联肢钢板剪力墙试件的延性系数达到5.03,承载力退化系数均大于0.96,承载力和刚度退化稳定,等效黏滞阻尼系数达到0.25以上,表明联肢弯剪型钢板剪力墙具有优越的抗震性能。加载过程中,连梁先于墙板发生屈服,墙板先屈曲后屈服,此后柱脚和横梁相继屈服。连梁的引入改变了结构的屈服机制,提高了整体的延性和耗能能力,能够组成多道抗震防线,且试件整体最终也体现出合理的破坏机制。整体侧移曲线呈弯剪变形模式。该试验研究更加贴合实际工程中联肢钢板剪力墙结构的应用情况,为联肢钢板剪力墙结构的进一步研究和应用提供了试验基础。 展开更多
关键词 联肢钢板剪力墙 低周往复加载试验 抗震性能 屈服机制 变形模式
下载PDF
国产低屈服点芯材屈曲约束支撑的滞回性能及减震效果研究
16
作者 许浩 贾苏帆 +2 位作者 何文福 胡宝琳 张强 《工程抗震与加固改造》 北大核心 2024年第4期137-147,共11页
为了研究芯材为LY160软钢的屈曲约束支撑滞回性能以及减震效果,针对LY160钢材和BRB构件进行了从材性、构件性能、到结构地震响应的系统试验和分析工作。首先完成了LY160钢材的材性试验,得到LY160钢材试件的平均屈服强度为170MPa,断裂伸... 为了研究芯材为LY160软钢的屈曲约束支撑滞回性能以及减震效果,针对LY160钢材和BRB构件进行了从材性、构件性能、到结构地震响应的系统试验和分析工作。首先完成了LY160钢材的材性试验,得到LY160钢材试件的平均屈服强度为170MPa,断裂伸长率为48.2%;随后进行了屈曲约束支撑的低周往复加载试验,采用LY160的屈曲约束支撑破坏位移为1/45L,延性系数达到17,最后开展了6层钢筋混凝土框架结构的弹塑性地震响应分析,发现使用LY160芯材的LBRB结构相较于使用Q235芯材的普通NBRB结构,不仅结构动力响应的减震效果提升了25%,同时还可有效地改善结构在强震下的塑性损伤,采用低屈服点软钢为芯板的屈曲约束支撑可以有效提升结构的抗震安全性。 展开更多
关键词 屈曲约束支撑 国产低屈服点芯材 材性试验 循环往复试验 地震响应分析
下载PDF
双层圆钢管混凝土长柱压扭滞回性能试验
17
作者 周中一 庞新龙 +2 位作者 王涛 靳宇航 罗诒红 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第1期117-129,共13页
为研究双层圆钢管混凝土长柱在压、扭荷载作用下的力学性能,利用研制的Stewart六自由度加载平台,进行了两个普通圆钢管混凝土长柱和两个双层圆钢管混凝土长柱试件在纯扭、压扭作用下的低周往复试验。对比分析了各试件的承载力、扭转变... 为研究双层圆钢管混凝土长柱在压、扭荷载作用下的力学性能,利用研制的Stewart六自由度加载平台,进行了两个普通圆钢管混凝土长柱和两个双层圆钢管混凝土长柱试件在纯扭、压扭作用下的低周往复试验。对比分析了各试件的承载力、扭转变形、耗能、滞回性能,进行了有限元参数分析。研究表明:普通圆钢管混凝土长柱和双层圆钢管混凝土长柱均具有较好的抗扭能力;与普通圆钢管混凝土长柱相比,双层圆钢管混凝土长柱的初始刚度和承载力略有提升,滞回曲线更饱满,耗能能力和延性大幅提升;参数分析表明含钢率一定时,内层钢管径厚比越大,对抗扭越有利;一定范围内的轴向荷载,可提高钢管混凝土柱的抗扭能力。 展开更多
关键词 钢管混凝土 纯扭 压扭 拟静力往复加载 STEWART平台
下载PDF
水平双轴加载下带翼缘RC 剪力墙抗震性能试验研究
18
作者 王斌 吴梦臻 +2 位作者 史庆轩 蔡文哲 弓欢学 《振动工程学报》 EI CSCD 北大核心 2024年第4期588-600,共13页
为了揭示双轴耦合效应对不同截面形式带翼缘RC剪力墙多维抗震性能的影响,对3个T形截面和2个L形截面RC剪力墙分别沿其主轴方向进行了低周往复加载试验,对比分析了水平单、双轴加载下带翼缘RC剪力墙的破坏特征、滞回特性、承载力、延性、... 为了揭示双轴耦合效应对不同截面形式带翼缘RC剪力墙多维抗震性能的影响,对3个T形截面和2个L形截面RC剪力墙分别沿其主轴方向进行了低周往复加载试验,对比分析了水平单、双轴加载下带翼缘RC剪力墙的破坏特征、滞回特性、承载力、延性、极限位移角、耗能能力与钢筋应变。研究表明:T形墙和L形墙的破坏均呈现出明显的非对称性,即破坏集中于墙肢自由端,双轴加载加重了带翼缘RC剪力墙的开裂和损伤程度,且易引起剪力墙局部损伤集中;与单轴加载相比,双轴加载不仅削弱了带翼缘RC剪力墙各受力方向的承载力与变形能力、增大了腹板塑性铰区弯曲变形在总变形中的占比、加速了耗能进程、降低了单个方向的耗能能力,并且增大了腹板与翼缘竖向钢筋的应变以及翼缘的剪力滞后效应;双轴耦合效应对L形墙损伤的影响较T形墙更为显著,并导致双轴加载下L形墙各抗震性能指标的衰减程度大于T形墙。考虑双轴受力后,中国抗震规范关于RC剪力墙层间位移角的限值仍较为安全,但安全冗余度降低。 展开更多
关键词 剪力墙 抗震性能 双轴加载 低周往复加载试验 损伤机理
下载PDF
被困空腔对T-bar循环贯入软黏土流动特性影响的试验研究
19
作者 李永靖 郑晓明 +4 位作者 田英辉 王乐 张春会 王智超 岳宏亮 《长江科学院院报》 CSCD 北大核心 2024年第5期108-115,共8页
为观测和分析T-bar循环贯入过程中被困空腔对软黏土流动特性的影响,利用Laponite RD、焦磷酸钠和去离子水配制透明黏土,自制由加载设备、CCD相机、激光器和控制系统组成的T-bar循环贯入试验装置,开展T-bar在透明黏土中的循环贯入试验。... 为观测和分析T-bar循环贯入过程中被困空腔对软黏土流动特性的影响,利用Laponite RD、焦磷酸钠和去离子水配制透明黏土,自制由加载设备、CCD相机、激光器和控制系统组成的T-bar循环贯入试验装置,开展T-bar在透明黏土中的循环贯入试验。结果表明:T-bar初次贯入过程中,被困空腔影响土体绕探头的流动,土体不能进入全流动状态;T-bar初次上拔过程中,被困空腔与探头发生脱离,悬浮于探头上方,对土体流动的影响逐渐减弱,T-bar上拔2倍探头直径深度时土体流动不再受被困空腔影响,进入到全流动状态;第2—第10次循环贯入过程中,被困空腔稳定悬浮于土中,不影响土体流动,T-bar贯入1倍探头直径深度时土体流动表现为全流动状态;被困空腔对于T-bar循环贯入测试结果无显著影响,在T-bar初次贯入被困空腔阶段下通过T-bar循环贯入测试软黏土重塑强度是合理的。 展开更多
关键词 透明黏土 T-bar 循环贯入试验 被困空腔 流动特性
下载PDF
考虑泄漏和温度效应的黏滞阻尼器性能演变研究
20
作者 杨孟刚 曹恺悦 +1 位作者 李新 胡尚韬 《振动与冲击》 EI CSCD 北大核心 2024年第8期169-177,共9页
黏滞阻尼器作为一种广泛使用的被动减振/震装置,其力学性能在全寿命周期内会发生演变。为探究其力学参数改变模式,揭示其性能演变机理,以油液泄漏和温度效应为主要影响因素开展了试验及仿真研究。首先,对不同漏油程度和环境温度下的黏... 黏滞阻尼器作为一种广泛使用的被动减振/震装置,其力学性能在全寿命周期内会发生演变。为探究其力学参数改变模式,揭示其性能演变机理,以油液泄漏和温度效应为主要影响因素开展了试验及仿真研究。首先,对不同漏油程度和环境温度下的黏滞阻尼器分别开展了滞回试验研究和黏温关系分析;其次,对黏滞阻尼器进行了流体动力学仿真,获得其性能演变规律;最后,建立了漏油与温度联合作用下黏滞阻尼器性能演变的力学模型,并对其进行了验证。研究结果表明,油液泄漏将导致滞回圈出现零力平台段,且平台长度与漏油比例成正比;温度升高会导致阻尼系数的减小,从而影响阻尼力峰值;所建立的性能演变模型能够较为精确地反映黏滞阻尼器力学性能的改变。 展开更多
关键词 黏滞阻尼器 油液泄漏 温度效应 性能演变模型 滞回试验 流体动力学仿真
下载PDF
上一页 1 2 83 下一页 到第
使用帮助 返回顶部